An Efficient and Scalable Algorithm for Multi-Relational Frequent Pattern Discovery

Wei Zhang, Bingru Yang
{"title":"An Efficient and Scalable Algorithm for Multi-Relational Frequent Pattern Discovery","authors":"Wei Zhang, Bingru Yang","doi":"10.1109/ISDA.2006.92","DOIUrl":null,"url":null,"abstract":"We propose MRFPDA, an efficient and scalable algorithm for multi-relational frequent pattern discovery. We incorporate in the algorithm an optimal refinement operator to provide an improvement of the efficiency of candidate generation. Furthermore, MRFPDA utilizes a new strategy of sharing computations to avoid redundant computations in the candidate evaluation. In our experiments, it is shown that on small datasets the performance of MRFPDA is comparable with the performance of the state-of-the-art of multi-relational frequent pattern discovery, and on large datasets MRFPDA is more scalable than two existing approaches","PeriodicalId":116729,"journal":{"name":"Sixth International Conference on Intelligent Systems Design and Applications","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sixth International Conference on Intelligent Systems Design and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISDA.2006.92","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We propose MRFPDA, an efficient and scalable algorithm for multi-relational frequent pattern discovery. We incorporate in the algorithm an optimal refinement operator to provide an improvement of the efficiency of candidate generation. Furthermore, MRFPDA utilizes a new strategy of sharing computations to avoid redundant computations in the candidate evaluation. In our experiments, it is shown that on small datasets the performance of MRFPDA is comparable with the performance of the state-of-the-art of multi-relational frequent pattern discovery, and on large datasets MRFPDA is more scalable than two existing approaches
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
一种高效可扩展的多关系频繁模式发现算法
提出了一种高效、可扩展的多关系频繁模式发现算法MRFPDA。我们在算法中加入了一个优化算子,提高了候选项生成的效率。此外,MRFPDA采用了一种新的共享计算策略,避免了候选评估中的冗余计算。在我们的实验中,结果表明,在小数据集上,MRFPDA的性能与最先进的多关系频繁模式发现的性能相当,在大数据集上,MRFPDA比两种现有方法更具可扩展性
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Improved Lagrange Nonlinear Programming Neural Networks for Inequality Constraints Enhancement Filter for Computer-Aided Detection of Pulmonary Nodules on Thoracic CT images A View-Based Toeplitz-Matrix-Supported System for Word Recognition without Segmentation A Novel Spatial Clustering with Obstacles Constraints Based on Genetic Algorithms and K-Medoids An Intelligent Runoff Forecasting Method Based on Fuzzy sets, Neural network and Genetic Algorithm
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1