Testing market response to auditor change filings: A comparison of machine learning classifiers

IF 3.9 Q1 Mathematics Journal of Finance and Data Science Pub Date : 2019-03-01 DOI:10.1016/j.jfds.2018.08.001
Richard Holowczak , David Louton , Hakan Saraoglu
{"title":"Testing market response to auditor change filings: A comparison of machine learning classifiers","authors":"Richard Holowczak ,&nbsp;David Louton ,&nbsp;Hakan Saraoglu","doi":"10.1016/j.jfds.2018.08.001","DOIUrl":null,"url":null,"abstract":"<div><p>The use of textual information contained in company filings with the Securities Exchange Commission (SEC), including annual reports on Form 10-K, quarterly reports on Form 10-Q, and current reports on Form 8-K, has gained the increased attention of finance and accounting researchers. In this paper we use a set of machine learning methods to predict the market response to changes in a firm's auditor as reported in public filings. We vectorize the text of 8-K filings to test whether the resulting feature matrix can explain the sign of the market response to the filing. Specifically, using classification algorithms and a sample consisting of the Item 4.01 text of 8-K documents, which provides information on changes in auditors of companies that are registered with the SEC, we predict the sign of the cumulative abnormal return (CAR) around 8-K filing dates. We report the correct classification performance and time efficiency of the classification algorithms. Our results show some improvement over the naïve classification method.</p></div>","PeriodicalId":36340,"journal":{"name":"Journal of Finance and Data Science","volume":"5 1","pages":"Pages 48-59"},"PeriodicalIF":3.9000,"publicationDate":"2019-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.jfds.2018.08.001","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Finance and Data Science","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2405918818300096","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 5

Abstract

The use of textual information contained in company filings with the Securities Exchange Commission (SEC), including annual reports on Form 10-K, quarterly reports on Form 10-Q, and current reports on Form 8-K, has gained the increased attention of finance and accounting researchers. In this paper we use a set of machine learning methods to predict the market response to changes in a firm's auditor as reported in public filings. We vectorize the text of 8-K filings to test whether the resulting feature matrix can explain the sign of the market response to the filing. Specifically, using classification algorithms and a sample consisting of the Item 4.01 text of 8-K documents, which provides information on changes in auditors of companies that are registered with the SEC, we predict the sign of the cumulative abnormal return (CAR) around 8-K filing dates. We report the correct classification performance and time efficiency of the classification algorithms. Our results show some improvement over the naïve classification method.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
测试市场对审计师变更文件的反应:机器学习分类器的比较
公司向证券交易委员会(SEC)提交的文件中包含的文本信息的使用,包括10-K表格的年度报告、10-Q表格的季度报告和8-K表格的当前报告,已经引起了金融和会计研究人员越来越多的关注。在本文中,我们使用一组机器学习方法来预测市场对公开文件中报告的公司审计师变化的反应。我们对8-K文件的文本进行矢量化,以测试所得到的特征矩阵是否可以解释市场对文件的反应。具体而言,使用分类算法和由8-K文件的第4.01条文本组成的样本(该文本提供了在美国证券交易委员会注册的公司审计师变化的信息),我们预测了8-K提交日期前后累积异常回报(CAR)的迹象。我们报告了正确的分类性能和时间效率的分类算法。我们的结果显示了naïve分类方法的一些改进。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Finance and Data Science
Journal of Finance and Data Science Mathematics-Statistics and Probability
CiteScore
3.90
自引率
0.00%
发文量
15
审稿时长
30 days
期刊最新文献
Leveraging financial interdependencies in emerging markets via graph neural networks Enhancing bookkeeper decision support through graph representation learning for bank reconciliation Multifractal and low-dimensional representations of high-frequency return distribution sequences Finding money launderers using heterogeneous graph neural networks Integrating Choquet portfolios and machine learning interpretability for robust cryptocurrency investment strategies
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1