Seonjoo Lee, V. Zipunnikov, N. Shiee, C. Crainiceanu, B. Caffo, D. Pham
{"title":"Clustering of High Dimensional Longitudinal Imaging Data","authors":"Seonjoo Lee, V. Zipunnikov, N. Shiee, C. Crainiceanu, B. Caffo, D. Pham","doi":"10.1109/PRNI.2013.18","DOIUrl":null,"url":null,"abstract":"In the study of brain disease processes and aging, longitudinal imaging studies are becoming increasingly commonplace. Indeed, there are hundreds of studies collecting multi-sequence multi-modality brain images at multiple time points on hundreds of subjects over many years. A fundamental problem in this context is how to classify subjects according to their baseline and longitudinal changes in the presence of strong spatio-temporal biological and technological measurement error. We propose a fast and scalable clustering approach by defining a metric between latent trajectories of brain images. Methods were motivated by and applied to a longitudinal voxel-based morphometry study of multiple sclerosis. Results indicate that there are two distinct patterns of ventricular change that are associated with clinical outcomes.","PeriodicalId":144007,"journal":{"name":"2013 International Workshop on Pattern Recognition in Neuroimaging","volume":"86 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-06-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 International Workshop on Pattern Recognition in Neuroimaging","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PRNI.2013.18","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
In the study of brain disease processes and aging, longitudinal imaging studies are becoming increasingly commonplace. Indeed, there are hundreds of studies collecting multi-sequence multi-modality brain images at multiple time points on hundreds of subjects over many years. A fundamental problem in this context is how to classify subjects according to their baseline and longitudinal changes in the presence of strong spatio-temporal biological and technological measurement error. We propose a fast and scalable clustering approach by defining a metric between latent trajectories of brain images. Methods were motivated by and applied to a longitudinal voxel-based morphometry study of multiple sclerosis. Results indicate that there are two distinct patterns of ventricular change that are associated with clinical outcomes.