{"title":"Supporting extended precision on graphics processors","authors":"Mian Lu, Bingsheng He, Qiong Luo","doi":"10.1145/1869389.1869392","DOIUrl":null,"url":null,"abstract":"Scientific computing applications often require support for non-traditional data types, for example, numbers with a precision higher than 64-bit floats. As graphics processors, or GPUs, have emerged as a powerful accelerator for scientific computing, we design and implement a GPU-based extended precision library to enable applications with high precision requirement to run on the GPU. Our library contains arithmetic operators, mathematical functions, and data-parallel primitives, each of which can operate at either multi-term or multi-digit precision. The multi-term precision maintains an accuracy of up to 212 bits of signifcand whereas the multi-digit precision allows an accuracy of an arbitrary number of bits. Additionally, we have integrated the extended precision algorithms to a GPU-based query processing engine to support efficient query processing with extended precision on GPUs. To demonstrate the usage of our library, we have implemented three applications: parallel summation in climate modeling, Newton's method used in nonlinear physics, and high precision numerical integration in experimental mathematics. The GPU-based implementation is up to an order of magnitude faster, and achieves the same accuracy as their optimized, quadcore CPU-based counterparts.","PeriodicalId":298901,"journal":{"name":"International Workshop on Data Management on New Hardware","volume":"125 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"65","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Workshop on Data Management on New Hardware","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1869389.1869392","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 65
Abstract
Scientific computing applications often require support for non-traditional data types, for example, numbers with a precision higher than 64-bit floats. As graphics processors, or GPUs, have emerged as a powerful accelerator for scientific computing, we design and implement a GPU-based extended precision library to enable applications with high precision requirement to run on the GPU. Our library contains arithmetic operators, mathematical functions, and data-parallel primitives, each of which can operate at either multi-term or multi-digit precision. The multi-term precision maintains an accuracy of up to 212 bits of signifcand whereas the multi-digit precision allows an accuracy of an arbitrary number of bits. Additionally, we have integrated the extended precision algorithms to a GPU-based query processing engine to support efficient query processing with extended precision on GPUs. To demonstrate the usage of our library, we have implemented three applications: parallel summation in climate modeling, Newton's method used in nonlinear physics, and high precision numerical integration in experimental mathematics. The GPU-based implementation is up to an order of magnitude faster, and achieves the same accuracy as their optimized, quadcore CPU-based counterparts.