Supporting extended precision on graphics processors

Mian Lu, Bingsheng He, Qiong Luo
{"title":"Supporting extended precision on graphics processors","authors":"Mian Lu, Bingsheng He, Qiong Luo","doi":"10.1145/1869389.1869392","DOIUrl":null,"url":null,"abstract":"Scientific computing applications often require support for non-traditional data types, for example, numbers with a precision higher than 64-bit floats. As graphics processors, or GPUs, have emerged as a powerful accelerator for scientific computing, we design and implement a GPU-based extended precision library to enable applications with high precision requirement to run on the GPU. Our library contains arithmetic operators, mathematical functions, and data-parallel primitives, each of which can operate at either multi-term or multi-digit precision. The multi-term precision maintains an accuracy of up to 212 bits of signifcand whereas the multi-digit precision allows an accuracy of an arbitrary number of bits. Additionally, we have integrated the extended precision algorithms to a GPU-based query processing engine to support efficient query processing with extended precision on GPUs. To demonstrate the usage of our library, we have implemented three applications: parallel summation in climate modeling, Newton's method used in nonlinear physics, and high precision numerical integration in experimental mathematics. The GPU-based implementation is up to an order of magnitude faster, and achieves the same accuracy as their optimized, quadcore CPU-based counterparts.","PeriodicalId":298901,"journal":{"name":"International Workshop on Data Management on New Hardware","volume":"125 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"65","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Workshop on Data Management on New Hardware","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1869389.1869392","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 65

Abstract

Scientific computing applications often require support for non-traditional data types, for example, numbers with a precision higher than 64-bit floats. As graphics processors, or GPUs, have emerged as a powerful accelerator for scientific computing, we design and implement a GPU-based extended precision library to enable applications with high precision requirement to run on the GPU. Our library contains arithmetic operators, mathematical functions, and data-parallel primitives, each of which can operate at either multi-term or multi-digit precision. The multi-term precision maintains an accuracy of up to 212 bits of signifcand whereas the multi-digit precision allows an accuracy of an arbitrary number of bits. Additionally, we have integrated the extended precision algorithms to a GPU-based query processing engine to support efficient query processing with extended precision on GPUs. To demonstrate the usage of our library, we have implemented three applications: parallel summation in climate modeling, Newton's method used in nonlinear physics, and high precision numerical integration in experimental mathematics. The GPU-based implementation is up to an order of magnitude faster, and achieves the same accuracy as their optimized, quadcore CPU-based counterparts.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
支持图形处理器的扩展精度
科学计算应用程序通常需要支持非传统数据类型,例如,精度高于64位浮点数的数字。随着图形处理器(GPU)成为科学计算的强大加速器,我们设计并实现了一个基于GPU的扩展精度库,使具有高精度要求的应用程序能够在GPU上运行。我们的库包含算术运算符、数学函数和数据并行原语,每一个都可以以多项或多位数精度进行操作。多项精度保持高达212位有效位的精度,而多位数精度允许任意位数的精度。此外,我们将扩展精度算法集成到基于gpu的查询处理引擎中,以支持gpu上具有扩展精度的高效查询处理。为了演示我们的库的使用,我们实现了三个应用:气候建模中的并行求和,非线性物理中使用的牛顿方法,以及实验数学中的高精度数值积分。基于gpu的实现速度快了一个数量级,并且达到了与基于优化的四核cpu对应的相同的精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
On testing persistent-memory-based software SIMD-accelerated regular expression matching FPGA-accelerated group-by aggregation using synchronizing caches Customized OS support for data-processing Larger-than-memory data management on modern storage hardware for in-memory OLTP database systems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1