A novel optimization robust design of artificial neural networks to solve the inverse kinematics of a manipulator of 6 DOF

Teodoro Ibarra-Pérez, M. R. Martinez-Blanco, Fernando Olivera Domingo, J. Ortiz-Rodríguez, Javier Escribano
{"title":"A novel optimization robust design of artificial neural networks to solve the inverse kinematics of a manipulator of 6 DOF","authors":"Teodoro Ibarra-Pérez, M. R. Martinez-Blanco, Fernando Olivera Domingo, J. Ortiz-Rodríguez, Javier Escribano","doi":"10.1109/ICIT46573.2021.9453701","DOIUrl":null,"url":null,"abstract":"In the design of neural networks, generally the selection of the structural parameters is chosen through trial and error procedures, consuming large amounts of resources and unavailable time, without guaranteeing the optimal configuration of the parameters that allow obtaining the best performance of the network. In this paper, the robust design methodology of artificial neural networks based on the Taguchi philosophy was used to select the optimal parameters in a back-propagation network architecture to solve the inverse kinematics in a 6 degrees of freedom robotic manipulator. The parameters to optimize were the number of hidden layers, the number of neurons per layer, the learning rate, the momentum, the number of neurons per layer and the size of the training set versus the test set. Allowing to identify all the combinations possible in relation to the number of variables involved by performing a significant number of experiments compared to other methods where they usually run a huge number of experiments. The results obtained allowed to optimize the design parameters and substantially improve the precision of the results, achieving a prediction percentage of 90% with a margin of error less than 5% during the testing stage","PeriodicalId":193338,"journal":{"name":"2021 22nd IEEE International Conference on Industrial Technology (ICIT)","volume":"46 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 22nd IEEE International Conference on Industrial Technology (ICIT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIT46573.2021.9453701","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

In the design of neural networks, generally the selection of the structural parameters is chosen through trial and error procedures, consuming large amounts of resources and unavailable time, without guaranteeing the optimal configuration of the parameters that allow obtaining the best performance of the network. In this paper, the robust design methodology of artificial neural networks based on the Taguchi philosophy was used to select the optimal parameters in a back-propagation network architecture to solve the inverse kinematics in a 6 degrees of freedom robotic manipulator. The parameters to optimize were the number of hidden layers, the number of neurons per layer, the learning rate, the momentum, the number of neurons per layer and the size of the training set versus the test set. Allowing to identify all the combinations possible in relation to the number of variables involved by performing a significant number of experiments compared to other methods where they usually run a huge number of experiments. The results obtained allowed to optimize the design parameters and substantially improve the precision of the results, achieving a prediction percentage of 90% with a margin of error less than 5% during the testing stage
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
针对六自由度机械臂的运动学逆问题,提出了一种新的优化稳健人工神经网络设计方法
在神经网络的设计中,结构参数的选择通常是通过试错过程来选择的,这消耗了大量的资源和不可用的时间,不能保证参数的最优配置以获得网络的最佳性能。本文采用基于田口理论的人工神经网络鲁棒设计方法,在反向传播网络体系结构中选取最优参数求解6自由度机器人的运动学逆问题。要优化的参数是隐藏层的数量、每层神经元的数量、学习率、动量、每层神经元的数量以及训练集与测试集的大小。与其他通常需要大量实验的方法相比,通过进行大量实验来确定与所涉及的变量数量相关的所有可能的组合。得到的结果可以优化设计参数,大大提高了结果的精度,在测试阶段,预测率达到90%,误差范围小于5%
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Z Packed U-cell (ZPUC) topology, configuration of single DC Source single-phase and three-phase Multilevel Converter Optimal Utilization of the Dual-Active Bridge Converter with Bidirectional Charge Control Long Short-Term Memory based RNN for COVID-19 disease prediction Bispectrum and Kurtosis Analysis of Rotor Currents for the Detection of Field Winding Faults in Synchronous Motors Sequence-Frame Coupling Admittance Analysis and Stability of VSC Connected to Weak Grid
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1