Psychovisual and statistical optimization of quantization tables for DCT compression engines

S. Battiato, M. Mancuso, A. Bosco, M. Guarnera
{"title":"Psychovisual and statistical optimization of quantization tables for DCT compression engines","authors":"S. Battiato, M. Mancuso, A. Bosco, M. Guarnera","doi":"10.1109/ICIAP.2001.957076","DOIUrl":null,"url":null,"abstract":"The paper presents a new and statistically robust algorithm able to improve the performance of the standard DCT compression algorithm for both perceived quality and compression size. The approach proposed combines together an information theoretical/statistical approach with HVS (human visual system) response functions. The methodology applied permits us to obtain a suitable quantization table for specific classes of images and specific viewing conditions. The paper presents a case study where the right parameters are learned after an extensive experimental phase, for three specific classes: document, landscape and portrait. The results show both perceptive and measured (in term of PSNR) improvement. A further application shows how it is possible obtain significant improvement profiling the relative DCT error inside the pipeline of images acquired by typical digital sensors.","PeriodicalId":365627,"journal":{"name":"Proceedings 11th International Conference on Image Analysis and Processing","volume":"32 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2001-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"33","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings 11th International Conference on Image Analysis and Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIAP.2001.957076","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 33

Abstract

The paper presents a new and statistically robust algorithm able to improve the performance of the standard DCT compression algorithm for both perceived quality and compression size. The approach proposed combines together an information theoretical/statistical approach with HVS (human visual system) response functions. The methodology applied permits us to obtain a suitable quantization table for specific classes of images and specific viewing conditions. The paper presents a case study where the right parameters are learned after an extensive experimental phase, for three specific classes: document, landscape and portrait. The results show both perceptive and measured (in term of PSNR) improvement. A further application shows how it is possible obtain significant improvement profiling the relative DCT error inside the pipeline of images acquired by typical digital sensors.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
DCT压缩引擎量化表的心理视觉和统计优化
本文提出了一种新的统计鲁棒算法,能够在感知质量和压缩大小方面提高标准DCT压缩算法的性能。该方法将信息理论/统计方法与HVS(人类视觉系统)响应函数结合在一起。所采用的方法使我们能够为特定类别的图像和特定的观看条件获得合适的量化表。本文提出了一个案例研究,其中正确的参数是经过广泛的实验阶段学习后,为三个特定的类:文件,景观和肖像。结果显示了感知和测量(就PSNR而言)的改善。进一步的应用表明,如何在典型数字传感器获得的图像管道内的相对DCT误差分析中获得显着改善。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Circle detection based on orientation matching Towards teleconferencing by view synthesis and large-baseline stereo Learning and caricaturing the face space using self-organization and Hebbian learning for face processing Bayesian face recognition with deformable image models Using feature-vector based analysis, based on principal component analysis and independent component analysis, for analysing hyperspectral images
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1