Load-Balanced Task Allocation for Improved System Lifetime in Mobile Crowdsensing

Garvita Bajaj, Pushpendra Singh
{"title":"Load-Balanced Task Allocation for Improved System Lifetime in Mobile Crowdsensing","authors":"Garvita Bajaj, Pushpendra Singh","doi":"10.1109/MDM.2018.00040","DOIUrl":null,"url":null,"abstract":"Mobile CrowdSensing (MCS) applications rely on sensor data collected from a number of mobile participant devices; the participant devices need to sustain in the system for longer duration in order to services multiple requests. In this work, we propose two online load-balanced algorithms, that use available resources on mobile devices, to efficiently allocate tasks to a subset of participants. We have conducted extensive simulations to compare our algorithms with three baseline approaches and observed significant improvements in the system lifetime and the total number of tasks serviced. To further validate our results, we also conduct real-world experiments on 8 smartphones. We achieve 29.3% increase in the number of tasks serviced, with drastic improvements in system lifetime (in resource constrained cases) over the state-of-the-art approaches.","PeriodicalId":205319,"journal":{"name":"2018 19th IEEE International Conference on Mobile Data Management (MDM)","volume":"112 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 19th IEEE International Conference on Mobile Data Management (MDM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MDM.2018.00040","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

Mobile CrowdSensing (MCS) applications rely on sensor data collected from a number of mobile participant devices; the participant devices need to sustain in the system for longer duration in order to services multiple requests. In this work, we propose two online load-balanced algorithms, that use available resources on mobile devices, to efficiently allocate tasks to a subset of participants. We have conducted extensive simulations to compare our algorithms with three baseline approaches and observed significant improvements in the system lifetime and the total number of tasks serviced. To further validate our results, we also conduct real-world experiments on 8 smartphones. We achieve 29.3% increase in the number of tasks serviced, with drastic improvements in system lifetime (in resource constrained cases) over the state-of-the-art approaches.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于负载均衡任务分配的移动群体感知系统寿命改进
移动群体感知(MCS)应用程序依赖于从许多移动参与者设备收集的传感器数据;为了服务多个请求,参与设备需要在系统中维持更长的时间。在这项工作中,我们提出了两种在线负载平衡算法,它们利用移动设备上的可用资源,有效地将任务分配给参与者的子集。我们进行了大量的模拟,将我们的算法与三种基线方法进行比较,并观察到系统生命周期和服务任务总数方面的显著改进。为了进一步验证我们的结果,我们还在8部智能手机上进行了真实的实验。我们服务的任务数量增加了29.3%,与最先进的方法相比,系统生命周期(在资源受限的情况下)得到了极大的改善。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
FMS: Managing Crowdsourced Indoor Signals with the Fingerprint Management Studio Stochastic Shortest Path Finding in Path-Centric Uncertain Road Networks Concept for Evaluation of Techniques for Trajectory Distance Measures VIPTRA: Visualization and Interactive Processing on Big Trajectory Data DCount - A Probabilistic Algorithm for Accurately Disaggregating Building Occupant Counts into Room Counts
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1