A parallel algorithm for lossless image compression by block matching

L. Cinque, S. Agostino, F. Liberati
{"title":"A parallel algorithm for lossless image compression by block matching","authors":"L. Cinque, S. Agostino, F. Liberati","doi":"10.1109/DCC.2002.999993","DOIUrl":null,"url":null,"abstract":"Summary form only given. We show a parallel algorithm using a rectangle greedy matching technique which requires a linear number of processors and O(log(M)log(n)) time on the PRAM EREW model. The algorithm is suitable for practical parallel architectures as a mesh of trees, a pyramid or a multigrid. We implement a sequential procedure which simulates the compression performed by the parallel algorithm and it achieves 95 to 97 percent of the compression of a previous sequential heuristic. To achieve logarithmic time we partition an m/spl times/n image, I, in x/spl times/y rectangular areas where x and y are /spl Theta/(log/sup 1/2 / mn). In parallel for each area, one processor applies the sequential parsing algorithm, so that, in logarithmic time, each area is parsed in rectangles, some of which are monochromatic. Before encoding, we compute larger monochromatic rectangles by merging the ones adjacent on the horizontal boundaries and then on the vertical boundaries, doubling in this way the length and width of each area at each step.","PeriodicalId":420897,"journal":{"name":"Proceedings DCC 2002. Data Compression Conference","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2002-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings DCC 2002. Data Compression Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DCC.2002.999993","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Summary form only given. We show a parallel algorithm using a rectangle greedy matching technique which requires a linear number of processors and O(log(M)log(n)) time on the PRAM EREW model. The algorithm is suitable for practical parallel architectures as a mesh of trees, a pyramid or a multigrid. We implement a sequential procedure which simulates the compression performed by the parallel algorithm and it achieves 95 to 97 percent of the compression of a previous sequential heuristic. To achieve logarithmic time we partition an m/spl times/n image, I, in x/spl times/y rectangular areas where x and y are /spl Theta/(log/sup 1/2 / mn). In parallel for each area, one processor applies the sequential parsing algorithm, so that, in logarithmic time, each area is parsed in rectangles, some of which are monochromatic. Before encoding, we compute larger monochromatic rectangles by merging the ones adjacent on the horizontal boundaries and then on the vertical boundaries, doubling in this way the length and width of each area at each step.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于块匹配的图像无损压缩并行算法
只提供摘要形式。我们展示了一种使用矩形贪婪匹配技术的并行算法,该算法在PRAM EREW模型上需要线性数量的处理器和O(log(M)log(n))时间。该算法适用于实际的并行结构,如树网格、金字塔网格或多重网格。我们实现了一个模拟并行算法压缩的顺序过程,它的压缩率达到了之前顺序启发式算法的95 - 97%。为了获得对数时间,我们将m/spl乘以/n图像I划分为x/spl乘以/y矩形区域,其中x和y为/spl Theta/(log/sup 1/2 / mn)。对于每个区域,一个处理器并行地应用顺序解析算法,因此,在对数时间内,每个区域被解析为矩形,其中一些是单色的。在编码之前,我们通过合并水平边界和垂直边界上相邻的矩形来计算更大的单色矩形,以这种方式在每一步将每个区域的长度和宽度加倍。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Reduced complexity quantization under classification constraints Less redundant codes for variable size dictionaries Compression techniques for active video content LZAC lossless data compression Data compression of correlated non-binary sources using punctured turbo codes
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1