Visual attention based visual vocabulary

Ma Zhong, Zhao Xin-Bo
{"title":"Visual attention based visual vocabulary","authors":"Ma Zhong, Zhao Xin-Bo","doi":"10.1109/ICOT.2014.6954669","DOIUrl":null,"url":null,"abstract":"We aim to build a visual vocabulary by applying a model of visual attention. Concretely, we first learn a computational visual attention model from the real eye tracking data. Then using this model to find the most salient regions in the images, and extracting features from these regions to build a visual vocabulary with more expressive power. The experiment was conducted to verify the effectiveness of the proposed visual attention based visual vocabulary. The results show that the proposed vocabulary boosts the performance of the category recognition, which means the proposed vocabulary outperforms the traditional one.","PeriodicalId":343641,"journal":{"name":"2014 International Conference on Orange Technologies","volume":"111 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 International Conference on Orange Technologies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICOT.2014.6954669","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We aim to build a visual vocabulary by applying a model of visual attention. Concretely, we first learn a computational visual attention model from the real eye tracking data. Then using this model to find the most salient regions in the images, and extracting features from these regions to build a visual vocabulary with more expressive power. The experiment was conducted to verify the effectiveness of the proposed visual attention based visual vocabulary. The results show that the proposed vocabulary boosts the performance of the category recognition, which means the proposed vocabulary outperforms the traditional one.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于视觉词汇的视觉注意
我们的目标是通过应用视觉注意模型来建立一个视觉词汇。具体来说,我们首先从真实的眼动追踪数据中学习一个计算视觉注意模型。然后利用该模型找到图像中最显著的区域,并从这些区域中提取特征,构建具有更强表达能力的视觉词汇表。实验验证了基于视觉注意的视觉词汇的有效性。结果表明,提出的词汇能提高分类识别的性能,优于传统词汇。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
An automatic speaker-speech recognition system for friendly HMI based on binary halved clustering A fuzzy clustering algorithm via enhanced spatially constraint for brain MR image segmentation A novel saliency detection framework for infrared thermal images A multistep liver segmentation strategy by combining level set based method with texture analysis for CT images An emotional feedback system based on a regulation process model for happiness improvement
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1