Graph wavelet applied to human brain connectivity

P. Besson, C. Delmaire, V. Thuc, S. Lehéricy, F. Pasquier, X. Leclerc
{"title":"Graph wavelet applied to human brain connectivity","authors":"P. Besson, C. Delmaire, V. Thuc, S. Lehéricy, F. Pasquier, X. Leclerc","doi":"10.1109/ISBI.2009.5193309","DOIUrl":null,"url":null,"abstract":"The graph theory is increasingly used and provides powerful tools for studying complex biological networks problems. They were able to characterize the small-worldness of the brain connectivity network and were accurate enough to observe topological differences between healthy and diseased brain graphs. However, these methods relied on topological characteristics implying that differences could be observed between two groups only if corresponding graphs topologies were different.","PeriodicalId":272938,"journal":{"name":"2009 IEEE International Symposium on Biomedical Imaging: From Nano to Macro","volume":"101 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 IEEE International Symposium on Biomedical Imaging: From Nano to Macro","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISBI.2009.5193309","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

The graph theory is increasingly used and provides powerful tools for studying complex biological networks problems. They were able to characterize the small-worldness of the brain connectivity network and were accurate enough to observe topological differences between healthy and diseased brain graphs. However, these methods relied on topological characteristics implying that differences could be observed between two groups only if corresponding graphs topologies were different.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
图小波在人脑连接中的应用
图论的应用日益广泛,为研究复杂的生物网络问题提供了有力的工具。他们能够描述大脑连接网络的小世界特征,并且足够准确地观察到健康和患病脑图之间的拓扑差异。然而,这些方法依赖于拓扑特征,这意味着只有当对应的图拓扑不同时才能观察到两组之间的差异。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Automatic alignment of stacks of filament data Analysis of nerve activity and optical signals from mouse brain stem to identify cells generating respiratory rhythms Segmentation and classification of triple negative breast cancers using DCE-MRI Improved registration for large electron microscopy images Special purpose 3-D reconstruction and restoration algorithms for electron microscopy of nanoscale objects and an enabling software toolkit
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1