On-line harmonic estimation in power system based on sequential training radial basis function neural network

Eyad K. Almaita, J. Asumadu
{"title":"On-line harmonic estimation in power system based on sequential training radial basis function neural network","authors":"Eyad K. Almaita, J. Asumadu","doi":"10.1109/ICIT.2011.5754361","DOIUrl":null,"url":null,"abstract":"Harmonic estimation is considered the most crucial part in harmonic mitigation process in power system. Artificial intelligent based on pattern recognition techniques is considered one of dependable methods that can effectively realize highly nonlinear functions. In this paper, a radial basis function neural network (RBFNN) is used to dynamically identify and estimate the fundamental, fifth harmonic, and seventh harmonic components in converter waveforms. The fast training algorithm and the small size of the resulted networks, without hindering the performance criteria, prove effectiveness of the proposed method.","PeriodicalId":356868,"journal":{"name":"2011 IEEE International Conference on Industrial Technology","volume":"101 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 IEEE International Conference on Industrial Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIT.2011.5754361","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 15

Abstract

Harmonic estimation is considered the most crucial part in harmonic mitigation process in power system. Artificial intelligent based on pattern recognition techniques is considered one of dependable methods that can effectively realize highly nonlinear functions. In this paper, a radial basis function neural network (RBFNN) is used to dynamically identify and estimate the fundamental, fifth harmonic, and seventh harmonic components in converter waveforms. The fast training algorithm and the small size of the resulted networks, without hindering the performance criteria, prove effectiveness of the proposed method.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于序列训练径向基函数神经网络的电力系统谐波在线估计
谐波估计被认为是电力系统谐波缓解过程中最关键的环节。基于模式识别技术的人工智能被认为是有效实现高度非线性函数的可靠方法之一。本文采用径向基函数神经网络(RBFNN)对变换器波形中的基频、五次谐波和七次谐波分量进行动态辨识和估计。快速的训练算法和较小的网络规模,在不影响性能标准的情况下,证明了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Hoist Scheduling for multi-part CHSP in complex lines' configuration A study of discrete-time sliding mode control for SI engine idle speed control Emulation of PMSG/half-controlled converter combination with digital signal processor FPGA based intelligent condition monitoring of induction motors: Detection, diagnosis, and prognosis Bilateral control of 3-mass resonant system based on resonance ratio control
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1