Comparative Analysis of Machine learning techniques for Forecasting Ionospheric Total Electron Content Data

Nayana Shenvi, Hassanali Virani
{"title":"Comparative Analysis of Machine learning techniques for Forecasting Ionospheric Total Electron Content Data","authors":"Nayana Shenvi, Hassanali Virani","doi":"10.1109/INCET57972.2023.10169972","DOIUrl":null,"url":null,"abstract":"The ionosphere is a highly dynamic region of the Earth's atmosphere that plays a crucial role in global navigation and communication systems. Accurate forecasting of ionospheric activity is essential for mitigating its impact on these systems. In recent years, machine learning techniques have shown promise in predicting ionospheric activity, but there is limited research on their comparative performance. This paper presents a comparative analysis of various machine learning techniques for forecasting ionospheric total electron content (TEC) data. Specifically, we compare the performance of five popular machine learning techniques- linear regression, multi-layer perceptron neural networks, K-nearest neighbors, support vector regression and random forest regressor. We use TEC data along with exogenous parameters namely By, Bz, Vp, Np, F10.7, Kp, Dst and Ap. We evaluate the performance of the models at different latitudes and during solar quiet and active years. Our results show that the Random Forest Regressor (RFR) outperformed the other techniques with the lowest root mean square error (RMSE) and mean absolute error (MAE). The R2 value suggests that the RFR model provides the best fit to the TEC data compared to other models evaluated and can be used for ionospheric TEC forecasting.","PeriodicalId":403008,"journal":{"name":"2023 4th International Conference for Emerging Technology (INCET)","volume":"81 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-05-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 4th International Conference for Emerging Technology (INCET)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/INCET57972.2023.10169972","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The ionosphere is a highly dynamic region of the Earth's atmosphere that plays a crucial role in global navigation and communication systems. Accurate forecasting of ionospheric activity is essential for mitigating its impact on these systems. In recent years, machine learning techniques have shown promise in predicting ionospheric activity, but there is limited research on their comparative performance. This paper presents a comparative analysis of various machine learning techniques for forecasting ionospheric total electron content (TEC) data. Specifically, we compare the performance of five popular machine learning techniques- linear regression, multi-layer perceptron neural networks, K-nearest neighbors, support vector regression and random forest regressor. We use TEC data along with exogenous parameters namely By, Bz, Vp, Np, F10.7, Kp, Dst and Ap. We evaluate the performance of the models at different latitudes and during solar quiet and active years. Our results show that the Random Forest Regressor (RFR) outperformed the other techniques with the lowest root mean square error (RMSE) and mean absolute error (MAE). The R2 value suggests that the RFR model provides the best fit to the TEC data compared to other models evaluated and can be used for ionospheric TEC forecasting.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
预测电离层总电子含量数据的机器学习技术比较分析
电离层是地球大气中一个高度动态的区域,在全球导航和通信系统中起着至关重要的作用。电离层活动的准确预报对于减轻其对这些系统的影响至关重要。近年来,机器学习技术在预测电离层活动方面显示出了希望,但对其比较性能的研究有限。本文介绍了预测电离层总电子含量(TEC)数据的各种机器学习技术的比较分析。具体来说,我们比较了五种流行的机器学习技术的性能——线性回归、多层感知器神经网络、k近邻、支持向量回归和随机森林回归。我们使用TEC数据以及外源参数,即By、Bz、Vp、Np、F10.7、Kp、Dst和Ap。我们评估了模型在不同纬度以及太阳平静年和活跃年的性能。我们的研究结果表明,随机森林回归(RFR)以最低的均方根误差(RMSE)和平均绝对误差(MAE)优于其他技术。R2值表明RFR模型对TEC数据的拟合效果最好,可用于电离层TEC预报。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Deep Learning-Based Solution for Differently-Abled Persons in The Society CARP-YOLO: A Detection Framework for Recognising and Counting Fish Species in a Cluttered Environment Implementation of Covid patient Health Monitoring System using IoT ESP Tuning to Reduce Auxiliary Power Consumption and Preserve Environment Real-time Recognition of Indian Sign Language using OpenCV and Deep Learning
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1