{"title":"Quadratic-chi similarity metric learning for histogram feature","authors":"Xinyuan Cai, Baihua Xiao, Chunheng Wang, Rongguo Zhang","doi":"10.1109/ACPR.2011.6166698","DOIUrl":null,"url":null,"abstract":"Histogram features, such as SIFT, HOG, LBP et al, are widely used in modern computer vision algorithms. According to [18], chi-square distance is an effective measure for comparing histogram features. In this paper, we propose a new method, named the Quadric-chi similarity metric learning (QCSML) for histogram features. The main contribution of this paper is that we propose a new metric learning method based on chi-square distance, in contrast with traditional Mahalanobis distance metric learning methods. The use of quadric-chi similarity in our method leads to an effective learning algorithm. Our method is tested on SIFT features for face identification, and compared with the state-of-art metric learning method (LDML) on the benchmark dataset, the Labeled Faces in the Wild (LFW). Experimental results show that our method can achieve clear performance gains over LDML.","PeriodicalId":287232,"journal":{"name":"The First Asian Conference on Pattern Recognition","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The First Asian Conference on Pattern Recognition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ACPR.2011.6166698","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
Histogram features, such as SIFT, HOG, LBP et al, are widely used in modern computer vision algorithms. According to [18], chi-square distance is an effective measure for comparing histogram features. In this paper, we propose a new method, named the Quadric-chi similarity metric learning (QCSML) for histogram features. The main contribution of this paper is that we propose a new metric learning method based on chi-square distance, in contrast with traditional Mahalanobis distance metric learning methods. The use of quadric-chi similarity in our method leads to an effective learning algorithm. Our method is tested on SIFT features for face identification, and compared with the state-of-art metric learning method (LDML) on the benchmark dataset, the Labeled Faces in the Wild (LFW). Experimental results show that our method can achieve clear performance gains over LDML.
直方图特征在现代计算机视觉算法中得到了广泛的应用,如SIFT、HOG、LBP等。根据[18],卡方距离是比较直方图特征的有效度量。在本文中,我们提出了一种新的直方图特征的相似度度量学习(QCSML)方法。本文的主要贡献在于,与传统的马氏距离度量学习方法相比,我们提出了一种新的基于卡方距离的度量学习方法。在我们的方法中使用二次chi相似度导致了一个有效的学习算法。我们的方法在SIFT特征上进行了人脸识别测试,并在基准数据集Labeled Faces in the Wild (LFW)上与最先进的度量学习方法(LDML)进行了比较。实验结果表明,与LDML相比,我们的方法可以获得明显的性能提升。