You Only Search Once: A Fast Automation Framework for Single-Stage DNN/Accelerator Co-design

Weiwei Chen, Ying Wang, Shuang Yang, Chen Liu, Lei Zhang
{"title":"You Only Search Once: A Fast Automation Framework for Single-Stage DNN/Accelerator Co-design","authors":"Weiwei Chen, Ying Wang, Shuang Yang, Chen Liu, Lei Zhang","doi":"10.23919/DATE48585.2020.9116474","DOIUrl":null,"url":null,"abstract":"DNN/Accelerator co-design has shown great potential in improving QoR and performance. Typical approaches separate the design flow into two-stage: (1) designing an application-specific DNN model with high accuracy; (2) building an accelerator considering the DNN specific characteristics. However, it may fails in promising the highest composite score which combines the goals of accuracy and other hardware-related constraints (e.g., latency, energy efficiency) when building a specific neural-network-based system. In this work, we present a single-stage automated framework, YOSO, aiming to generate the optimal solution of software-and-hardware that flexibly balances between the goal of accuracy, power, and QoS. Compared with the two-stage method on the baseline systolic array accelerator and Cifar10 dataset, we achieve 1.42x~2.29x energy or 1.79x~3.07x latency reduction at the same level of precision, for different user-specified energy and latency optimization constraints, respectively.","PeriodicalId":289525,"journal":{"name":"2020 Design, Automation & Test in Europe Conference & Exhibition (DATE)","volume":"47 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 Design, Automation & Test in Europe Conference & Exhibition (DATE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/DATE48585.2020.9116474","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

Abstract

DNN/Accelerator co-design has shown great potential in improving QoR and performance. Typical approaches separate the design flow into two-stage: (1) designing an application-specific DNN model with high accuracy; (2) building an accelerator considering the DNN specific characteristics. However, it may fails in promising the highest composite score which combines the goals of accuracy and other hardware-related constraints (e.g., latency, energy efficiency) when building a specific neural-network-based system. In this work, we present a single-stage automated framework, YOSO, aiming to generate the optimal solution of software-and-hardware that flexibly balances between the goal of accuracy, power, and QoS. Compared with the two-stage method on the baseline systolic array accelerator and Cifar10 dataset, we achieve 1.42x~2.29x energy or 1.79x~3.07x latency reduction at the same level of precision, for different user-specified energy and latency optimization constraints, respectively.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
你只搜索一次:单级DNN/加速器协同设计的快速自动化框架
DNN/Accelerator协同设计在提高QoR和性能方面显示出巨大的潜力。典型的方法将设计流程分为两个阶段:(1)设计高精度的特定应用深度神经网络模型;(2)根据深度神经网络的特点构建加速器。然而,在构建特定的基于神经网络的系统时,它可能无法承诺最高的综合分数,该分数结合了准确性和其他硬件相关限制(例如,延迟,能源效率)的目标。在这项工作中,我们提出了一个单阶段自动化框架YOSO,旨在生成软件和硬件的最佳解决方案,灵活地平衡精度、功率和QoS的目标。与基线收缩阵列加速器和Cifar10数据集上的两阶段方法相比,在相同精度水平下,在不同的用户指定能量和延迟优化约束下,我们分别实现了1.42倍~2.29倍的能量降低和1.79倍~3.07倍的延迟降低。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
In-Memory Resistive RAM Implementation of Binarized Neural Networks for Medical Applications Towards Formal Verification of Optimized and Industrial Multipliers A 100KHz-1GHz Termination-dependent Human Body Communication Channel Measurement using Miniaturized Wearable Devices Computational SRAM Design Automation using Pushed-Rule Bitcells for Energy-Efficient Vector Processing PIM-Aligner: A Processing-in-MRAM Platform for Biological Sequence Alignment
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1