Three-Dimensional Automatic Target Recognition System Based on Optical Integral Imaging Reconstruction

Min-Chul Lee, Kotaro Inoue, M. Cho
{"title":"Three-Dimensional Automatic Target Recognition System Based on Optical Integral Imaging Reconstruction","authors":"Min-Chul Lee, Kotaro Inoue, M. Cho","doi":"10.6109/jicce.2016.14.1.051","DOIUrl":null,"url":null,"abstract":"In this paper, we present a three-dimensional (3-D) automatic target recognition system based on optical integral imaging reconstruction. In integral imaging, elemental images of the reference and target 3-D objects are obtained through a lenslet array or a camera array. Then, reconstructed 3-D images at various reconstruction depths can be optically generated on the output plane by back-projecting these elemental images onto a display panel. 3-D automatic target recognition can be implemented using computational integral imaging reconstruction and digital nonlinear correlation filters. However, these methods require non-trivial computation time for reconstruction and recognition. Instead, we implement 3-D automatic target recognition using optical cross-correlation between the reconstructed 3-D reference and target images at the same reconstruction depth. Our method depends on an all-optical structure to realize a real-time 3-D automatic target recognition system. In addition, we use a nonlinear correlation filter to improve recognition performance. To prove our proposed method, we carry out the optical experiments and report recognition results.","PeriodicalId":272551,"journal":{"name":"J. Inform. and Commun. Convergence Engineering","volume":"43 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"J. Inform. and Commun. Convergence Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.6109/jicce.2016.14.1.051","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

In this paper, we present a three-dimensional (3-D) automatic target recognition system based on optical integral imaging reconstruction. In integral imaging, elemental images of the reference and target 3-D objects are obtained through a lenslet array or a camera array. Then, reconstructed 3-D images at various reconstruction depths can be optically generated on the output plane by back-projecting these elemental images onto a display panel. 3-D automatic target recognition can be implemented using computational integral imaging reconstruction and digital nonlinear correlation filters. However, these methods require non-trivial computation time for reconstruction and recognition. Instead, we implement 3-D automatic target recognition using optical cross-correlation between the reconstructed 3-D reference and target images at the same reconstruction depth. Our method depends on an all-optical structure to realize a real-time 3-D automatic target recognition system. In addition, we use a nonlinear correlation filter to improve recognition performance. To prove our proposed method, we carry out the optical experiments and report recognition results.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于光学积分成像重建的三维自动目标识别系统
本文提出了一种基于光学积分成像重建的三维目标自动识别系统。在积分成像中,通过透镜阵列或相机阵列获得参考和目标三维物体的元素图像。然后,通过将这些元素图像反向投影到显示面板上,可以在输出平面上光学生成不同重建深度的重建三维图像。利用计算积分成像重建和数字非线性相关滤波器可以实现三维目标自动识别。然而,这些方法需要大量的计算时间来进行重建和识别。相反,我们利用重建的三维参考图像与相同重建深度的目标图像之间的光学相互关系实现三维自动目标识别。该方法依靠全光结构实现实时三维自动目标识别系统。此外,我们使用非线性相关滤波器来提高识别性能。为了验证我们提出的方法,我们进行了光学实验并报告了识别结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Low Power Time Synchronization for Wireless Sensor Networks Using Density-Driven Scheduling Smart Home System Using Internet of Things Odoo Data Mining Module Using Market Basket Analysis Seafarers Walking on an Unstable Platform: Comparisons of Time and Frequency Domain Analyses for Gait Event Detection Navigator Lookout Activity Classification Using Wearable Accelerometers
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1