Detecting malware using text documents extracted from spam email through machine learning

Luis Ángel Redondo-Gutierrez, Francisco Jáñez-Martino, Eduardo FIDALGO, Enrique Alegre, V. González-Castro, R. Alaíz-Rodríguez
{"title":"Detecting malware using text documents extracted from spam email through machine learning","authors":"Luis Ángel Redondo-Gutierrez, Francisco Jáñez-Martino, Eduardo FIDALGO, Enrique Alegre, V. González-Castro, R. Alaíz-Rodríguez","doi":"10.1145/3558100.3563854","DOIUrl":null,"url":null,"abstract":"Spam has become an effective way for cybercriminals to spread malware. Although cybersecurity agencies and companies develop products and organise courses for people to detect malicious spam email patterns, spam attacks are not totally avoided yet. In this work, we present and make publicly available \"Spam Email Malware Detection - 600\" (SEMD-600), a new dataset, based on Bruce Guenter's, for malware detection in spam using only the text of the email. We also introduce a pipeline for malware detection based on traditional Natural Language Processing (NLP) techniques. Using SEMD-600, we compare the text representation techniques Bag of Words and Term Frequency-Inverse Document Frequency (TF-IDF), in combination with three different supervised classifiers: Support Vector Machine, Naive Bayes and Logistic Regression, to detect malware in plain text documents. We found that combining TF-IDF with Logistic Regression achieved the best performance, with a macro F1 score of 0.763.","PeriodicalId":146244,"journal":{"name":"Proceedings of the 22nd ACM Symposium on Document Engineering","volume":"29 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 22nd ACM Symposium on Document Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3558100.3563854","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Spam has become an effective way for cybercriminals to spread malware. Although cybersecurity agencies and companies develop products and organise courses for people to detect malicious spam email patterns, spam attacks are not totally avoided yet. In this work, we present and make publicly available "Spam Email Malware Detection - 600" (SEMD-600), a new dataset, based on Bruce Guenter's, for malware detection in spam using only the text of the email. We also introduce a pipeline for malware detection based on traditional Natural Language Processing (NLP) techniques. Using SEMD-600, we compare the text representation techniques Bag of Words and Term Frequency-Inverse Document Frequency (TF-IDF), in combination with three different supervised classifiers: Support Vector Machine, Naive Bayes and Logistic Regression, to detect malware in plain text documents. We found that combining TF-IDF with Logistic Regression achieved the best performance, with a macro F1 score of 0.763.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过机器学习从垃圾邮件中提取文本文档来检测恶意软件
垃圾邮件已成为网络犯罪分子传播恶意软件的有效途径。虽然网络安全机构和公司开发产品和组织课程,让人们检测恶意垃圾邮件模式,但垃圾邮件攻击还没有完全避免。在这项工作中,我们提出并公开了“垃圾邮件恶意软件检测-600”(SEMD-600),这是一个基于Bruce Guenter的新数据集,用于仅使用电子邮件文本检测垃圾邮件中的恶意软件。我们还介绍了一种基于传统自然语言处理(NLP)技术的恶意软件检测管道。使用SEMD-600,我们比较了文本表示技术词袋和词频逆文档频率(TF-IDF),结合三种不同的监督分类器:支持向量机,朴素贝叶斯和逻辑回归,以检测纯文本文档中的恶意软件。我们发现TF-IDF与Logistic回归相结合的效果最好,宏观F1得分为0.763。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
How did dennis ritchie produce his PhD thesis?: a typographical mystery From print to online newspapers on small displays: a layout generation approach aimed at preserving entry points Binarization of photographed documents image quality, processing time and size assessment Tab this folder of documents: page stream segmentation of business documents Graphical document representation for french newsletters analysis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1