Baichuan Huang, R. Zanetti, A. Abtahi, D. Atienza, A. Aminifar
{"title":"EpilepsyNet: Interpretable Self-Supervised Seizure Detection for Low-Power Wearable Systems","authors":"Baichuan Huang, R. Zanetti, A. Abtahi, D. Atienza, A. Aminifar","doi":"10.1109/AICAS57966.2023.10168560","DOIUrl":null,"url":null,"abstract":"Epilepsy is one of the most common neurological disorders that is characterized by recurrent and unpredictable seizures. Wearable systems can be used to detect the onset of a seizure and notify family members and emergency units for rescue. The majority of state-of-the-art studies in the epilepsy domain currently explore modern machine learning techniques, e.g., deep neural networks, to accurately detect epileptic seizures. However, training deep learning networks requires a large amount of data and computing resources, which is a major challenge for resource-constrained wearable systems. In this paper, we propose EpilepsyNet, the first interpretable self-supervised network tailored to resource-constrained devices without using any seizure data in its initial offline training. At runtime, however, once a seizure is detected, it can be incorporated into our self-supervised technique to improve seizure detection performance, without the need to retrain our learning model, hence incurring no energy overheads. Our self-supervised approach can reach a detection performance of 79.2%, which is on par with the state-of-the-art fully-supervised deep neural networks trained on seizure data. At the same time, our proposed approach can be deployed in resource-constrained wearable devices, reaching up to 1.3 days of battery life on a single charge.","PeriodicalId":296649,"journal":{"name":"2023 IEEE 5th International Conference on Artificial Intelligence Circuits and Systems (AICAS)","volume":"41 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE 5th International Conference on Artificial Intelligence Circuits and Systems (AICAS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AICAS57966.2023.10168560","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Epilepsy is one of the most common neurological disorders that is characterized by recurrent and unpredictable seizures. Wearable systems can be used to detect the onset of a seizure and notify family members and emergency units for rescue. The majority of state-of-the-art studies in the epilepsy domain currently explore modern machine learning techniques, e.g., deep neural networks, to accurately detect epileptic seizures. However, training deep learning networks requires a large amount of data and computing resources, which is a major challenge for resource-constrained wearable systems. In this paper, we propose EpilepsyNet, the first interpretable self-supervised network tailored to resource-constrained devices without using any seizure data in its initial offline training. At runtime, however, once a seizure is detected, it can be incorporated into our self-supervised technique to improve seizure detection performance, without the need to retrain our learning model, hence incurring no energy overheads. Our self-supervised approach can reach a detection performance of 79.2%, which is on par with the state-of-the-art fully-supervised deep neural networks trained on seizure data. At the same time, our proposed approach can be deployed in resource-constrained wearable devices, reaching up to 1.3 days of battery life on a single charge.