EEG source imaging based on spatial and temporal graph structures

Jing Qin, Feng Liu, Shouyi Wang, J. Rosenberger
{"title":"EEG source imaging based on spatial and temporal graph structures","authors":"Jing Qin, Feng Liu, Shouyi Wang, J. Rosenberger","doi":"10.1109/IPTA.2017.8310089","DOIUrl":null,"url":null,"abstract":"EEG serves as an essential tool for brain source localization due to its high temporal resolution. However, the inference of brain activities from the EEG data is, in general, a challenging ill-posed inverse problem. To better retrieve task related discriminative source patches from strong spontaneous background signals, we propose a novel EEG source imaging model based on spatial and temporal graph structures. In particular, graph fractional-order total variation (gFOTV) is used to enhance spatial smoothness, and the label information of brain state is enclosed in a temporal graph regularization term to guarantee intra-class consistency of estimated sources. The proposed model is efficiently solved by the alternating direction method of multipliers (ADMM). A two-stage algorithm is proposed as well to further improve the result. Numerical experiments have shown that our method localizes source extents more effectively than the benchmark methods.","PeriodicalId":316356,"journal":{"name":"2017 Seventh International Conference on Image Processing Theory, Tools and Applications (IPTA)","volume":"97 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 Seventh International Conference on Image Processing Theory, Tools and Applications (IPTA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IPTA.2017.8310089","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

EEG serves as an essential tool for brain source localization due to its high temporal resolution. However, the inference of brain activities from the EEG data is, in general, a challenging ill-posed inverse problem. To better retrieve task related discriminative source patches from strong spontaneous background signals, we propose a novel EEG source imaging model based on spatial and temporal graph structures. In particular, graph fractional-order total variation (gFOTV) is used to enhance spatial smoothness, and the label information of brain state is enclosed in a temporal graph regularization term to guarantee intra-class consistency of estimated sources. The proposed model is efficiently solved by the alternating direction method of multipliers (ADMM). A two-stage algorithm is proposed as well to further improve the result. Numerical experiments have shown that our method localizes source extents more effectively than the benchmark methods.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于时空图结构的脑电源成像
脑电图具有较高的时间分辨率,是脑源定位的重要工具。然而,从脑电图数据推断大脑活动通常是一个具有挑战性的不适定逆问题。为了更好地从强自发背景信号中提取任务相关的判别源补丁,提出了一种基于时空图结构的脑电源成像模型。其中,利用图分数阶总变差(gFOTV)增强了空间平滑性,并将脑状态的标签信息封装在时序图正则化项中,保证了估计源的类内一致性。采用乘法器交替方向法(ADMM)对该模型进行了有效求解。为了进一步改进结果,提出了一种两阶段算法。数值实验表明,该方法比基准方法更有效地定位了声源范围。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Automated quantification of retinal vessel morphometry in the UK biobank cohort Deep learning for automatic sale receipt understanding Illumination-robust multispectral demosaicing Completed local structure patterns on three orthogonal planes for dynamic texture recognition Single object tracking using offline trained deep regression networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1