Gunshot Detection Using Convolutional Neural Networks

Jakub Bajzik, J. Prinosil, D. Koniar
{"title":"Gunshot Detection Using Convolutional Neural Networks","authors":"Jakub Bajzik, J. Prinosil, D. Koniar","doi":"10.1109/IEEECONF49502.2020.9141621","DOIUrl":null,"url":null,"abstract":"The main paper deals with the analysis of the methods of signal processing and events recognition in the audio signal and the implementation of the selected method in real use. Recognized events are gunshots mixed with a background sound such as traffic noise, human voice, animal sounds and other forms of environmental sounds. The proposed algorithm adapted for explosion detection can be used as part of a security system for monitoring depots or places dedicated to storing dangerous materials. For events classification and class recognition, the freely available machine learning frameworks TensorFlow and Keras are used.","PeriodicalId":186085,"journal":{"name":"2020 24th International Conference Electronics","volume":"64 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 24th International Conference Electronics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IEEECONF49502.2020.9141621","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

Abstract

The main paper deals with the analysis of the methods of signal processing and events recognition in the audio signal and the implementation of the selected method in real use. Recognized events are gunshots mixed with a background sound such as traffic noise, human voice, animal sounds and other forms of environmental sounds. The proposed algorithm adapted for explosion detection can be used as part of a security system for monitoring depots or places dedicated to storing dangerous materials. For events classification and class recognition, the freely available machine learning frameworks TensorFlow and Keras are used.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于卷积神经网络的枪响检测
本文主要对音频信号中的信号处理和事件识别方法进行了分析,并对所选方法在实际应用中的实现进行了阐述。可识别的事件是混合了背景声音(如交通噪音、人声、动物声和其他形式的环境声音)的枪声。该算法适用于爆炸探测,可作为安全系统的一部分,用于监控专门用于储存危险材料的仓库或场所。对于事件分类和类识别,使用免费的机器学习框架TensorFlow和Keras。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Cross-Border Coordination between International Mobile Telecommunications System and Aeronautical Telemetry System in the 1429–1518 MHz Frequency Band Modelling Corona Discharge Characteristic in Electricity Transmission Lines for Fault Detection System MQTT Algebraic Formal Modelling Using ACP Modelling a Leaf and Spine Topology for VM Migration in Fog Computing Propagation Losses Algorithm Development for Wireless Sensor Network
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1