{"title":"Reins-MAC: Firefly Inspired Communication Scheduling for Reliable Low-Power Wireless","authors":"M. Ceriotti, A. Murphy","doi":"10.1109/SASO.2018.00025","DOIUrl":null,"url":null,"abstract":"Pervasive sensing and actuation applications are increasingly being built using distributed devices connected with low-power wireless links. Most of these applications exploit anarchic protocols in which devices independently attempt to seize communication resources, supporting only best-effort applications as the communication they rely on cannot be guaranteed. For strict quality of service requirements, a few, non-anarchic, disciplined approaches exist in which nodes coordinate and resources are guaranteed to individual devices. Unfortunately, these solutions come at a considerable cost to form and conform to rigid communication schedules while considering the inherent volatility of the wireless environment. This work proposes Reins-MAC, a fully distributed solution that adapts to changes in the wireless environment and forms a flexible communication schedule able to support quality of service requirements. Inspired by pulse-coupled oscillators, the mathematical formulation of firefly flash synchronization, our approach forms and reserves communication slots of variable size in an online and adaptive manner. Reins-MAC tailors communication resources to network conditions that vary in time and space as well as to the explicit communication needs of devices by enabling distributed, dynamic changes to established schedules. Ultimately, Reins-MAC allows higher level abstractions to rein in the protocol anarchy, laying the foundation for reliable wireless applications.","PeriodicalId":405522,"journal":{"name":"2018 IEEE 12th International Conference on Self-Adaptive and Self-Organizing Systems (SASO)","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE 12th International Conference on Self-Adaptive and Self-Organizing Systems (SASO)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SASO.2018.00025","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3
Abstract
Pervasive sensing and actuation applications are increasingly being built using distributed devices connected with low-power wireless links. Most of these applications exploit anarchic protocols in which devices independently attempt to seize communication resources, supporting only best-effort applications as the communication they rely on cannot be guaranteed. For strict quality of service requirements, a few, non-anarchic, disciplined approaches exist in which nodes coordinate and resources are guaranteed to individual devices. Unfortunately, these solutions come at a considerable cost to form and conform to rigid communication schedules while considering the inherent volatility of the wireless environment. This work proposes Reins-MAC, a fully distributed solution that adapts to changes in the wireless environment and forms a flexible communication schedule able to support quality of service requirements. Inspired by pulse-coupled oscillators, the mathematical formulation of firefly flash synchronization, our approach forms and reserves communication slots of variable size in an online and adaptive manner. Reins-MAC tailors communication resources to network conditions that vary in time and space as well as to the explicit communication needs of devices by enabling distributed, dynamic changes to established schedules. Ultimately, Reins-MAC allows higher level abstractions to rein in the protocol anarchy, laying the foundation for reliable wireless applications.