The finite-sample risk of the k-nearest-neighbor classifier under the L/sub p/ metric

R. Snapp, S. S. Venkatesh
{"title":"The finite-sample risk of the k-nearest-neighbor classifier under the L/sub p/ metric","authors":"R. Snapp, S. S. Venkatesh","doi":"10.1109/WITS.1994.513925","DOIUrl":null,"url":null,"abstract":"The finite-sample risk of the k-nearest neighbor classifier that uses an L/sub 2/ distance function is examined. For a family of classification problems with smooth distributions in R/sup n/, the risk can be represented as an asymptotic expansion in inverse powers of the n-th root of the reference-sample size. The leading coefficients of this expansion suggest that the Euclidean or L/sub 2/ distance function minimizes the risk for sufficiently large reference samples.","PeriodicalId":423518,"journal":{"name":"Proceedings of 1994 Workshop on Information Theory and Statistics","volume":"42 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1994-10-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of 1994 Workshop on Information Theory and Statistics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WITS.1994.513925","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The finite-sample risk of the k-nearest neighbor classifier that uses an L/sub 2/ distance function is examined. For a family of classification problems with smooth distributions in R/sup n/, the risk can be represented as an asymptotic expansion in inverse powers of the n-th root of the reference-sample size. The leading coefficients of this expansion suggest that the Euclidean or L/sub 2/ distance function minimizes the risk for sufficiently large reference samples.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
在L/sub p/度量下k-近邻分类器的有限样本风险
研究了使用L/sub 2/距离函数的k近邻分类器的有限样本风险。对于一类光滑分布在R/sup n/中的分类问题,其风险可以表示为参考样本量n次方根的反幂的渐近展开式。该展开式的主要系数表明,对于足够大的参考样本,欧几里得或L/sub 2/距离函数将风险最小化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Large deviations and consistent estimates for Gibbs random fields Markov chains for modeling and analyzing digital data signals Maximized mutual information using macrocanonical probability distributions Coding for noisy feasible channels Identification via compressed data
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1