I. Harjula, R. Wichman, K. Pajukoski, Eeva Lähetkangas, E. Tiirola, O. Tirkkonen
{"title":"Full duplex relaying for local area","authors":"I. Harjula, R. Wichman, K. Pajukoski, Eeva Lähetkangas, E. Tiirola, O. Tirkkonen","doi":"10.1109/PIMRC.2013.6666602","DOIUrl":null,"url":null,"abstract":"We consider full-duplex multi-hop forwarding in a Beyond 4G local area network. In the network, there is a high density of self-backhauling relay nodes that simultaneously act as access points towards the users, in addition to few nodes with wired backhaul. The access is framed and synchronized along the multi-hop flow, and the nodes apply time division duplexing. Interference cancelation as well as power optimization is performed within the multihop route. Simulations are carried out in a local area network consisting of multiple multi-floor buildings. The propagation channel is modelled using static pathloss, log-normal distributed random variable, or static pathloss with Rayleigh fading. The simulation results indicate that full-duplex relaying improves the network performance over half-duplex relaying, if self-interference channel attenuation is kept over 80 dB. The means of achieving tolerable self-interference levels in full-duplexing relays via physical design of the relay, and analog and digital interference cancellation are discussed.","PeriodicalId":210993,"journal":{"name":"2013 IEEE 24th Annual International Symposium on Personal, Indoor, and Mobile Radio Communications (PIMRC)","volume":"46 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE 24th Annual International Symposium on Personal, Indoor, and Mobile Radio Communications (PIMRC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PIMRC.2013.6666602","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8
Abstract
We consider full-duplex multi-hop forwarding in a Beyond 4G local area network. In the network, there is a high density of self-backhauling relay nodes that simultaneously act as access points towards the users, in addition to few nodes with wired backhaul. The access is framed and synchronized along the multi-hop flow, and the nodes apply time division duplexing. Interference cancelation as well as power optimization is performed within the multihop route. Simulations are carried out in a local area network consisting of multiple multi-floor buildings. The propagation channel is modelled using static pathloss, log-normal distributed random variable, or static pathloss with Rayleigh fading. The simulation results indicate that full-duplex relaying improves the network performance over half-duplex relaying, if self-interference channel attenuation is kept over 80 dB. The means of achieving tolerable self-interference levels in full-duplexing relays via physical design of the relay, and analog and digital interference cancellation are discussed.