A new dimensionality reduction method for seabed characterization: supervised Curvilinear Component Analysis

Hicham Lanaaya, Arnaud Martin, D. Aboutajdine, Ali Khenchaf
{"title":"A new dimensionality reduction method for seabed characterization: supervised Curvilinear Component Analysis","authors":"Hicham Lanaaya, Arnaud Martin, D. Aboutajdine, Ali Khenchaf","doi":"10.1109/OCEANSE.2005.1511737","DOIUrl":null,"url":null,"abstract":"In this paper, we present a new method for dimensionality reduction, called supervised Curvilinear Component Analysis, for the classification of sonar images task using support vector machines. Indeed it is important in many underwater applications to get tools that give automatically the kind of sediments. This method derives from the known method Curvilinear Component Analysis. It gives good results for data not highly overlapped. We have used this method after a feature extraction step based on wavelet decomposition applied to our sonar images database.","PeriodicalId":120840,"journal":{"name":"Europe Oceans 2005","volume":"102 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Europe Oceans 2005","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/OCEANSE.2005.1511737","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

In this paper, we present a new method for dimensionality reduction, called supervised Curvilinear Component Analysis, for the classification of sonar images task using support vector machines. Indeed it is important in many underwater applications to get tools that give automatically the kind of sediments. This method derives from the known method Curvilinear Component Analysis. It gives good results for data not highly overlapped. We have used this method after a feature extraction step based on wavelet decomposition applied to our sonar images database.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
一种新的海底特征降维方法:监督曲线分量分析
本文提出了一种新的降维方法——监督曲线分量分析,用于支持向量机对声纳图像任务进行分类。事实上,在许多水下应用中,获得自动提供沉积物类型的工具是很重要的。该方法源于已知的曲线分量分析法。对于不高度重叠的数据,它给出了很好的结果。我们将基于小波分解的特征提取步骤应用到我们的声纳图像数据库中。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Experimental study and numerical modelling of a cod-end Measurement of deepwater ocean waves from a subsurface mooring GIS usage in planning of marine area assignment - case study Evaluation of local pressures in ships using potential flow models Spatial resolution enhancement of microwave scanning radiometer data
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1