{"title":"A Neural Network Boosted Double Over-Dispersed Poisson Claims Reserving Model","authors":"Andrea Gabrielli","doi":"10.2139/ssrn.3365517","DOIUrl":null,"url":null,"abstract":"We present an actuarial loss reserving technique that takes into account both claim counts and claim amounts. Separate (over-dispersed) Poisson models for the claim counts and the claim amounts are combined by a joint embedding into a neural network architecture. As starting point of the neural network calibration we use exactly these two separate (over-dispersed) Poisson models. Such a nested model can be interpreted as a boosting machine. It allows us for joint modeling and mutual learning of claim counts and claim amounts beyond the two individual (over-dispersed) Poisson models. Moreover, this choice of neural network initialization guarantees stability and accelerates representation learning.","PeriodicalId":114865,"journal":{"name":"ERN: Neural Networks & Related Topics (Topic)","volume":"55 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ERN: Neural Networks & Related Topics (Topic)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.3365517","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10
Abstract
We present an actuarial loss reserving technique that takes into account both claim counts and claim amounts. Separate (over-dispersed) Poisson models for the claim counts and the claim amounts are combined by a joint embedding into a neural network architecture. As starting point of the neural network calibration we use exactly these two separate (over-dispersed) Poisson models. Such a nested model can be interpreted as a boosting machine. It allows us for joint modeling and mutual learning of claim counts and claim amounts beyond the two individual (over-dispersed) Poisson models. Moreover, this choice of neural network initialization guarantees stability and accelerates representation learning.