Online surveillance object classification with training data updating

Chunni Dai
{"title":"Online surveillance object classification with training data updating","authors":"Chunni Dai","doi":"10.1109/ICALIP.2016.7846535","DOIUrl":null,"url":null,"abstract":"One of the main problems of object online classification using classifier trained offline is the mismatch of online test images and offline training data. In this paper, we propose an online video object classification algorithm with the mechanism of training data updating. By selecting part of the uncertain test data captured online and labeling them artificially to replace a proportion of the training data, the classifier can be retrained using the renew online training data, and thus the possible mismatch problem can be avoided and then higher classification accuracy can be achieved. From the experiments based on online surveillance video object classification, it was observed that: compared with existing classifier without training-data-updating, the proposed method can achieve up to average 18% classification accuracy increasing.","PeriodicalId":184170,"journal":{"name":"2016 International Conference on Audio, Language and Image Processing (ICALIP)","volume":"36 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 International Conference on Audio, Language and Image Processing (ICALIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICALIP.2016.7846535","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

One of the main problems of object online classification using classifier trained offline is the mismatch of online test images and offline training data. In this paper, we propose an online video object classification algorithm with the mechanism of training data updating. By selecting part of the uncertain test data captured online and labeling them artificially to replace a proportion of the training data, the classifier can be retrained using the renew online training data, and thus the possible mismatch problem can be avoided and then higher classification accuracy can be achieved. From the experiments based on online surveillance video object classification, it was observed that: compared with existing classifier without training-data-updating, the proposed method can achieve up to average 18% classification accuracy increasing.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于训练数据更新的在线监控对象分类
使用离线训练的分类器进行对象在线分类的主要问题之一是在线测试图像与离线训练数据不匹配。本文提出了一种基于训练数据更新机制的在线视频目标分类算法。通过对在线采集的部分不确定测试数据进行人工标注,取代一部分训练数据,利用更新后的在线训练数据对分类器进行再训练,避免了可能出现的不匹配问题,从而达到更高的分类精度。从基于在线监控视频目标分类的实验中可以看出:与不进行训练数据更新的现有分类器相比,本文方法的分类准确率平均提高了18%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Analysis of student activities trajectory and design of attendance management based on internet of things An RFID indoor positioning system by using Particle Swarm Optimization-based Artificial Neural Network Comparison of sparse-view CT image reconstruction algorithms Face recognition based on LBPH and regression of Local Binary features Research and application of dynamic and interactive data visualization based on D3
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1