Identifying Nontechnical Power Loss via Spatial and Temporal Deep Learning

Rajendra Rana Bhat, R. Trevizan, Rahul Sengupta, Xiaolin Li, A. Bretas
{"title":"Identifying Nontechnical Power Loss via Spatial and Temporal Deep Learning","authors":"Rajendra Rana Bhat, R. Trevizan, Rahul Sengupta, Xiaolin Li, A. Bretas","doi":"10.1109/ICMLA.2016.0052","DOIUrl":null,"url":null,"abstract":"Fraud detection in electricity consumption is a major challenge for power distribution companies. While many pattern recognition techniques have been applied to identify electricity theft, they often require extensive handcrafted feature engineering. Instead, through deep layers of transformation, nonlinearity, and abstraction, Deep Learning (DL) automatically extracts key features from data. In this paper, we design spatial and temporal deep learning solutions to identify nontechnical power losses (NTL), including Convolutional Neural Networks (CNN), Long Short-Term Memory (LSTM) and Stacked Autoencoder. These models are evaluated in a modified IEEE 123-bus test feeder. For the same tests, we also conduct comparison experiments using three conventional machine learning approaches: Random Forest, Decision Trees and shallow Neural Networks. Experimental results demonstrate that the spatiotemporal deep learning approaches outperform conventional machine learning approaches.","PeriodicalId":356182,"journal":{"name":"2016 15th IEEE International Conference on Machine Learning and Applications (ICMLA)","volume":"39 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"58","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 15th IEEE International Conference on Machine Learning and Applications (ICMLA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMLA.2016.0052","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 58

Abstract

Fraud detection in electricity consumption is a major challenge for power distribution companies. While many pattern recognition techniques have been applied to identify electricity theft, they often require extensive handcrafted feature engineering. Instead, through deep layers of transformation, nonlinearity, and abstraction, Deep Learning (DL) automatically extracts key features from data. In this paper, we design spatial and temporal deep learning solutions to identify nontechnical power losses (NTL), including Convolutional Neural Networks (CNN), Long Short-Term Memory (LSTM) and Stacked Autoencoder. These models are evaluated in a modified IEEE 123-bus test feeder. For the same tests, we also conduct comparison experiments using three conventional machine learning approaches: Random Forest, Decision Trees and shallow Neural Networks. Experimental results demonstrate that the spatiotemporal deep learning approaches outperform conventional machine learning approaches.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过时空深度学习识别非技术功率损失
电力消费中的欺诈检测是配电公司面临的主要挑战。虽然许多模式识别技术已被应用于识别电力盗窃,但它们通常需要大量的手工特征工程。相反,通过深层的转换、非线性和抽象,深度学习(DL)可以自动从数据中提取关键特征。在本文中,我们设计了空间和时间深度学习解决方案来识别非技术功率损耗(NTL),包括卷积神经网络(CNN),长短期记忆(LSTM)和堆叠自编码器。这些模型在改进的IEEE 123总线测试馈线中进行了评估。对于相同的测试,我们还使用三种传统的机器学习方法进行比较实验:随机森林,决策树和浅神经网络。实验结果表明,时空深度学习方法优于传统的机器学习方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Prediction Modelling and Pattern Detection Approach for the First-Episode Psychosis Associated to Cannabis Use An Effective and Efficient Similarity-Matrix-Based Algorithm for Clustering Big Mobile Social Data Time Series Classification Using Time Warping Invariant Echo State Networks Improved Time Series Classification with Representation Diversity and SVM Android Malware Detection: Building Useful Representations
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1