A systematic review on machine learning methods for root cause analysis towards zero-defect manufacturing

Konstantinos Papageorgiou, T. Theodosiou, A. Rapti, E. Papageorgiou, N. Dimitriou, D. Tzovaras, G. Margetis
{"title":"A systematic review on machine learning methods for root cause analysis towards zero-defect manufacturing","authors":"Konstantinos Papageorgiou, T. Theodosiou, A. Rapti, E. Papageorgiou, N. Dimitriou, D. Tzovaras, G. Margetis","doi":"10.3389/fmtec.2022.972712","DOIUrl":null,"url":null,"abstract":"The identification of defect causes plays a key role in smart manufacturing as it can reduce production risks, minimize the effects of unexpected downtimes, and optimize the production process. This paper implements a literature review protocol and reports the latest advances in Root Cause Analysis (RCA) toward Zero-Defect Manufacturing (ZDM). The most recent works are reported to demonstrate the use of machine learning methodologies for root cause analysis in the manufacturing domain. The popularity of these technologies is then summarized and presented in the form of visualizing graphs. This enables us to identify the most popular and prominent methods used in modern industry. Although artificial intelligence gains more and more attraction in smart manufacturing, machine learning methods for root cause analysis seem to be under-explored. The literature survey revealed that only limited reviews are available in the field of RCA towards zero-defect manufacturing using AI and machine learning; thus, it attempts to fill this gap. This work also presents a set of open challenges to determine future developments.","PeriodicalId":330401,"journal":{"name":"Frontiers in Manufacturing Technology","volume":"32 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Manufacturing Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3389/fmtec.2022.972712","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

The identification of defect causes plays a key role in smart manufacturing as it can reduce production risks, minimize the effects of unexpected downtimes, and optimize the production process. This paper implements a literature review protocol and reports the latest advances in Root Cause Analysis (RCA) toward Zero-Defect Manufacturing (ZDM). The most recent works are reported to demonstrate the use of machine learning methodologies for root cause analysis in the manufacturing domain. The popularity of these technologies is then summarized and presented in the form of visualizing graphs. This enables us to identify the most popular and prominent methods used in modern industry. Although artificial intelligence gains more and more attraction in smart manufacturing, machine learning methods for root cause analysis seem to be under-explored. The literature survey revealed that only limited reviews are available in the field of RCA towards zero-defect manufacturing using AI and machine learning; thus, it attempts to fill this gap. This work also presents a set of open challenges to determine future developments.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
面向零缺陷制造的机器学习根本原因分析方法综述
缺陷原因的识别在智能制造中起着关键作用,因为它可以降低生产风险,最大限度地减少意外停机的影响,并优化生产过程。本文实现了文献回顾协议,并报告了零缺陷制造的根本原因分析(RCA)的最新进展。据报道,最近的工作展示了在制造领域使用机器学习方法进行根本原因分析。然后总结这些技术的流行情况,并以可视化图表的形式呈现出来。这使我们能够确定现代工业中使用的最流行和最突出的方法。尽管人工智能在智能制造领域越来越受欢迎,但用于根本原因分析的机器学习方法似乎尚未得到充分探索。文献调查显示,在使用人工智能和机器学习实现零缺陷制造的RCA领域,只有有限的评论;因此,它试图填补这一空白。这项工作也提出了一系列公开的挑战,以确定未来的发展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Enhancing manufacturing operations with synthetic data: a systematic framework for data generation, accuracy, and utility Enhancing manufacturing operations with synthetic data: a systematic framework for data generation, accuracy, and utility Imaging systems and techniques for fusion-based metal additive manufacturing: a review Leveraging I4.0 smart methodologies for developing solutions for harvesting produce Editorial: Horizons in manufacturing technology
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1