A novel keyphrase extraction method by combining FP-growth and LDA

Hao Sun, Bing Li, Bo Han
{"title":"A novel keyphrase extraction method by combining FP-growth and LDA","authors":"Hao Sun, Bing Li, Bo Han","doi":"10.1109/FSKD.2017.8393033","DOIUrl":null,"url":null,"abstract":"Fast-growing technologies like cloud-computing, big data, mobile Internet, artificial intelligence, etc. have driven the emergences of a lot of new phrases. In this paper, we propose a novel keyphrases extraction method with two steps by combining FP-growth algorithm and Latent Dirichlet Allocation (LDA) topic modeling. In the first step, we apply FP-growth algorithm to obtain frequent neighborhood words co-occurring frequently as candidate phrases. In the second step, we extract significant keyphrases by LDA models. Our experiments on two datasets CVE-2015 and 20-newsgroups have shown that the proposed approach can extract significant keyphrases and these phrases can help improve the text classification accuracy.","PeriodicalId":236093,"journal":{"name":"2017 13th International Conference on Natural Computation, Fuzzy Systems and Knowledge Discovery (ICNC-FSKD)","volume":"125 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 13th International Conference on Natural Computation, Fuzzy Systems and Knowledge Discovery (ICNC-FSKD)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FSKD.2017.8393033","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Fast-growing technologies like cloud-computing, big data, mobile Internet, artificial intelligence, etc. have driven the emergences of a lot of new phrases. In this paper, we propose a novel keyphrases extraction method with two steps by combining FP-growth algorithm and Latent Dirichlet Allocation (LDA) topic modeling. In the first step, we apply FP-growth algorithm to obtain frequent neighborhood words co-occurring frequently as candidate phrases. In the second step, we extract significant keyphrases by LDA models. Our experiments on two datasets CVE-2015 and 20-newsgroups have shown that the proposed approach can extract significant keyphrases and these phrases can help improve the text classification accuracy.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
一种结合FP-growth和LDA的关键词提取新方法
云计算、大数据、移动互联网、人工智能等快速发展的技术带动了许多新短语的出现。本文将FP-growth算法与Latent Dirichlet Allocation (LDA)主题建模相结合,提出了一种新的两步关键短语提取方法。在第一步中,我们使用FP-growth算法获得频繁共存的邻域词作为候选短语。第二步,利用LDA模型提取重要关键短语。我们在CVE-2015和20-newsgroups两个数据集上的实验表明,该方法可以提取出重要的关键短语,这些关键短语有助于提高文本分类的准确率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Space syntax and time distance based analysis on the influences of the subways to the pubic traffic accessibility in Nanchang city Designing fuzzy apparatus to model dyslexic individual symptoms for clinical use A kNN classifier optimized by P systems Research on optimal operation of cascade hydropower station based on improved biogeography-based optimization algorithm An estimation algorithm of time-varying channels in the OFDM communication system
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1