{"title":"A Fully Automated Approach to Discovering Nondeterminism in State Machine Diagrams","authors":"O. Adesina, T. Lethbridge, S. Somé","doi":"10.1109/QUATIC.2016.021","DOIUrl":null,"url":null,"abstract":"We present a fully automated technique to detect nondeterminism in state diagrams. Although nondeterminism is a tool often adopted by requirement engineers for specification of a system under development (SUD), it is normally undesirable in actual implementation. Discovering nondeterminism manually is infeasible for industrial-sized systems. Solutions in the literature lack the capability to analyze infinite-state systems. We leverage the nuXmv model checker to analyze unbounded domains and implement an algorithm that systematically computes a minimal set of comparable transitions for the SUD yet eliminates false positives by model checking. To validate our approach, we analyze a real-world system and report discovered cases of nondeterminism. We employ Umple’s capability to convert state machines to nuXmv.","PeriodicalId":157671,"journal":{"name":"2016 10th International Conference on the Quality of Information and Communications Technology (QUATIC)","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 10th International Conference on the Quality of Information and Communications Technology (QUATIC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/QUATIC.2016.021","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7
Abstract
We present a fully automated technique to detect nondeterminism in state diagrams. Although nondeterminism is a tool often adopted by requirement engineers for specification of a system under development (SUD), it is normally undesirable in actual implementation. Discovering nondeterminism manually is infeasible for industrial-sized systems. Solutions in the literature lack the capability to analyze infinite-state systems. We leverage the nuXmv model checker to analyze unbounded domains and implement an algorithm that systematically computes a minimal set of comparable transitions for the SUD yet eliminates false positives by model checking. To validate our approach, we analyze a real-world system and report discovered cases of nondeterminism. We employ Umple’s capability to convert state machines to nuXmv.