Real-time 3D skeletonisation in computer vision-based human pose estimation using GPGPU

R. Bakken, Lars Moland Eliassen
{"title":"Real-time 3D skeletonisation in computer vision-based human pose estimation using GPGPU","authors":"R. Bakken, Lars Moland Eliassen","doi":"10.1109/IPTA.2012.6469538","DOIUrl":null,"url":null,"abstract":"Human pose estimation is the process of approximating the configuration of the body's underlying skeletal articulation in one or more frames. The curve-skeleton of an object is a line-like representation that preserves topology and geometrical information. Finding the curve-skeleton of a volume corresponding to the person is a good starting point for approximating the underlying skeletal structure. In this paper a GPU implementation of a fully parallel thinning algorithm based on the critical kernels framework is presented. The algorithm is compared to another state-of-the-art thinning method, and while it is demonstrated that both achieve real-time frame rates, the proposed algorithm yields superior accuracy and robustness when used in a pose estimation context. The GPU implementation is > 8× faster than a sequential version, and the positions of the four extremities are estimated with rms error ~6 cm and ~98 % of frames correctly labelled.","PeriodicalId":267290,"journal":{"name":"2012 3rd International Conference on Image Processing Theory, Tools and Applications (IPTA)","volume":"20 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 3rd International Conference on Image Processing Theory, Tools and Applications (IPTA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IPTA.2012.6469538","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Human pose estimation is the process of approximating the configuration of the body's underlying skeletal articulation in one or more frames. The curve-skeleton of an object is a line-like representation that preserves topology and geometrical information. Finding the curve-skeleton of a volume corresponding to the person is a good starting point for approximating the underlying skeletal structure. In this paper a GPU implementation of a fully parallel thinning algorithm based on the critical kernels framework is presented. The algorithm is compared to another state-of-the-art thinning method, and while it is demonstrated that both achieve real-time frame rates, the proposed algorithm yields superior accuracy and robustness when used in a pose estimation context. The GPU implementation is > 8× faster than a sequential version, and the positions of the four extremities are estimated with rms error ~6 cm and ~98 % of frames correctly labelled.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于GPGPU的基于计算机视觉的人体姿态估计中的实时三维骨架化
人体姿态估计是在一个或多个帧中近似人体底层骨骼关节的配置过程。对象的曲线骨架是保留拓扑和几何信息的线状表示。找到与人相对应的体积的曲线骨架是近似潜在骨架结构的一个很好的起点。本文提出了一种基于临界核框架的全并行细化算法的GPU实现。该算法与另一种最先进的细化方法进行了比较,虽然证明了两者都能实现实时帧率,但在姿态估计环境中使用时,所提出的算法具有更高的准确性和鲁棒性。GPU实现速度比顺序版本快8倍以上,四个肢体位置估计的均方根误差约为6 cm,正确标记的帧率约为98%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Case study: Deployment of the 2D NoC on 3D for the generation of large emulation platforms A combining approach for 2D face recognition application on IV2 database Spherical coordinates framed RGB color space dichromatic reflection model based image segmentation: Application to wildland fires' outlines extraction Image processing and vision for the study and the modeling of spreading fires Real time watermarking to authenticate the WSQ bitstream
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1