A Robust Multi-Sphere SVC Algorithm Based on Parameter Estimation

Kexin Jia, Yuxia Xin, Ting Cheng
{"title":"A Robust Multi-Sphere SVC Algorithm Based on Parameter Estimation","authors":"Kexin Jia, Yuxia Xin, Ting Cheng","doi":"10.1145/3503047.3503112","DOIUrl":null,"url":null,"abstract":"To improve the robustness to noise, outliers and arbitrary cluster boundaries, a robust multi-sphere support vector clustering (SVC) algorithm is proposed in this paper. The proposed algorithm can automatically estimate a suitable kernel parameter, and determine the cluster number. The Gaussian kernel parameter is firstly estimated through a kernel parameter estimation algorithm which is based on support vector domain description (SVDD) and original local variance (LV) algorithm. Based on the estimated kernel parameter, the SVC algorithm classifies the given data points into different clusters and then the SVDD algorithm is performed several times for each cluster. At last, the membership is computed and the final clustering result is obtained based on these computed memberships. Several simulations verify the effectiveness of the proposed algorithm.","PeriodicalId":190604,"journal":{"name":"Proceedings of the 3rd International Conference on Advanced Information Science and System","volume":"81 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 3rd International Conference on Advanced Information Science and System","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3503047.3503112","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

To improve the robustness to noise, outliers and arbitrary cluster boundaries, a robust multi-sphere support vector clustering (SVC) algorithm is proposed in this paper. The proposed algorithm can automatically estimate a suitable kernel parameter, and determine the cluster number. The Gaussian kernel parameter is firstly estimated through a kernel parameter estimation algorithm which is based on support vector domain description (SVDD) and original local variance (LV) algorithm. Based on the estimated kernel parameter, the SVC algorithm classifies the given data points into different clusters and then the SVDD algorithm is performed several times for each cluster. At last, the membership is computed and the final clustering result is obtained based on these computed memberships. Several simulations verify the effectiveness of the proposed algorithm.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
一种基于参数估计的鲁棒多球SVC算法
为了提高对噪声、离群点和任意聚类边界的鲁棒性,提出了一种鲁棒的多球支持向量聚类算法。该算法可以自动估计合适的核参数,并确定聚类数。首先通过基于支持向量域描述(SVDD)和原始局部方差(LV)算法的核参数估计算法估计高斯核参数;基于估计的核参数,SVC算法将给定的数据点分类到不同的聚类中,然后对每个聚类执行多次SVDD算法。最后,计算隶属度,并根据这些隶属度得到最终的聚类结果。仿真结果验证了该算法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Comparing the Popularity of Testing Careers among Canadian, Indian, Chinese, and Malaysian Students Radar Working Mode Recognition Method Based on Complex Network Analysis Unsupervised Barcode Image Reconstruction Based on Knowledge Distillation Research on the information System architecture design framework and reference resources of American Army Rearch on quantitative evaluation technology of equipment battlefield environment adaptability
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1