Enhancing wind power forecasting: A bootstrap resampling interpolated Markov model

S. Jafarzadeh, Jane Berk
{"title":"Enhancing wind power forecasting: A bootstrap resampling interpolated Markov model","authors":"S. Jafarzadeh, Jane Berk","doi":"10.1109/NAPS.2016.7747910","DOIUrl":null,"url":null,"abstract":"This paper presents an improved Markov forecasting for very short-term (1 hour) wind prediction in electrical power systems. The method utilizes the probability transition matrix, obtained for the Markov Model, to observe the trends of the data; this is used to forecast the power for an hour ahead in time. Next, improvement of the forecast is achieved using the method of weighted interpolation where weights are obtained using bootstrap resampling. Finally, the forecast is improved slightly using a hybrid of the two aforementioned approaches. Past wind farm power production data are used to develop the proposed model. Computer simulations using Northwestern weather recordings from the Bonneville Power Administration (BPA) website show good correlation between our predictions and the actual data.","PeriodicalId":249041,"journal":{"name":"2016 North American Power Symposium (NAPS)","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 North American Power Symposium (NAPS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NAPS.2016.7747910","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

This paper presents an improved Markov forecasting for very short-term (1 hour) wind prediction in electrical power systems. The method utilizes the probability transition matrix, obtained for the Markov Model, to observe the trends of the data; this is used to forecast the power for an hour ahead in time. Next, improvement of the forecast is achieved using the method of weighted interpolation where weights are obtained using bootstrap resampling. Finally, the forecast is improved slightly using a hybrid of the two aforementioned approaches. Past wind farm power production data are used to develop the proposed model. Computer simulations using Northwestern weather recordings from the Bonneville Power Administration (BPA) website show good correlation between our predictions and the actual data.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
增强风电预测:自举重采样插值马尔可夫模型
本文提出了一种改进的马尔可夫预测方法,用于电力系统的极短期(1小时)风预报。该方法利用马尔可夫模型得到的概率转移矩阵来观察数据的变化趋势;这是用来提前一小时预测电力的。其次,使用加权插值方法来改进预测,其中权重是通过自举重采样获得的。最后,使用上述两种方法的混合方法,预测结果略有改善。过去的风电场发电数据被用于开发所提出的模型。利用Bonneville电力管理局(BPA)网站上西北地区天气记录的计算机模拟显示,我们的预测与实际数据之间存在良好的相关性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Improving advanced inverter control convergence in distribution power flow A statistical analysis of the economic drivers of battery energy storage in commercial buildings Stealthy cyber attacks and impact analysis on wide-area protection of smart grid Modeling and optimal scheduling of integrated thermal and electrical energy microgrid Energy management and peak-shaving in grid-connected photovoltaic systems integrated with battery storage
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1