An Error-Reflective Consistency Model for Distributed Data Stores

Philip Dexter, K. Chiu, Bedri Sendir
{"title":"An Error-Reflective Consistency Model for Distributed Data Stores","authors":"Philip Dexter, K. Chiu, Bedri Sendir","doi":"10.1109/IPDPS.2019.00082","DOIUrl":null,"url":null,"abstract":"Consistency models for distributed data stores offer insights and paths to reasoning about what a user of such a system can expect. However, often consistency models are defined or implemented in coarse-grained manners, making it difficult to achieve precisely the consistency required. Further, many domains are already written to handle anomalies in distributed systems, yet they have little opportunity for expressing or taking advantage of their leniency. We propose reflective consistency-an active solution which adapts an underlying data store to changing loads and resource availability to meet a given consistency level. We implement reflective consistency in Cassandra, an existing distributed data store supporting per-read and per-write consistency. Our implementation allows users to express their anomaly leniency directly and the system will react to the presence of anomalies, changing Cassandra's consistency only when needed. Users of Reflective Cassandra can expect minimal overhead (anywhere from 1% to 14% depending on configuration) and a 50% decrease in the amount of costly strong reads.","PeriodicalId":403406,"journal":{"name":"2019 IEEE International Parallel and Distributed Processing Symposium (IPDPS)","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE International Parallel and Distributed Processing Symposium (IPDPS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IPDPS.2019.00082","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Consistency models for distributed data stores offer insights and paths to reasoning about what a user of such a system can expect. However, often consistency models are defined or implemented in coarse-grained manners, making it difficult to achieve precisely the consistency required. Further, many domains are already written to handle anomalies in distributed systems, yet they have little opportunity for expressing or taking advantage of their leniency. We propose reflective consistency-an active solution which adapts an underlying data store to changing loads and resource availability to meet a given consistency level. We implement reflective consistency in Cassandra, an existing distributed data store supporting per-read and per-write consistency. Our implementation allows users to express their anomaly leniency directly and the system will react to the presence of anomalies, changing Cassandra's consistency only when needed. Users of Reflective Cassandra can expect minimal overhead (anywhere from 1% to 14% depending on configuration) and a 50% decrease in the amount of costly strong reads.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
分布式数据存储的错误反射一致性模型
分布式数据存储的一致性模型提供了关于这种系统的用户可以期望什么的见解和推理路径。然而,一致性模型通常以粗粒度的方式定义或实现,这使得很难精确地实现所需的一致性。此外,许多领域已经被编写来处理分布式系统中的异常,但是它们很少有机会表达或利用它们的宽松性。我们提出了反射一致性——一种主动的解决方案,它使底层数据存储适应不断变化的负载和资源可用性,以满足给定的一致性级别。我们在Cassandra中实现了反射一致性,Cassandra是一个现有的分布式数据存储,支持读和写一致性。我们的实现允许用户直接表达他们的异常宽大,系统将对异常的存在做出反应,仅在需要时改变Cassandra的一致性。反射式Cassandra的用户可以期望最小的开销(根据配置从1%到14%不等),并且在昂贵的强读取数量上减少50%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Distributed Weighted All Pairs Shortest Paths Through Pipelining SAFIRE: Scalable and Accurate Fault Injection for Parallel Multithreaded Applications Architecting Racetrack Memory Preshift through Pattern-Based Prediction Mechanisms Z-Dedup:A Case for Deduplicating Compressed Contents in Cloud Dual Pattern Compression Using Data-Preprocessing for Large-Scale GPU Architectures
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1