Simulator of human visual perception

V. Bezzubik, N. Belashenkov
{"title":"Simulator of human visual perception","authors":"V. Bezzubik, N. Belashenkov","doi":"10.1117/12.2228176","DOIUrl":null,"url":null,"abstract":"Difference of Circs (DoC) model allowing to simulate the response of neurons – ganglion cells as a reaction to stimuli is represented and studied in relation with representation of receptive fields of human retina. According to this model the response of neurons is reduced to execution of simple arithmetic operations and the results of these calculations well correlate with experimental data in wide range of stimuli parameters. The simplicity of the model and reliability of reproducing of responses allow to propose the conception of a device which can simulate the signals generated by ganglion cells as a reaction to presented stimuli. The signals produced according to DoC model are considered as a result of primary processing of information received from receptors independently of their type and may be sent to higher levels of nervous system of living creatures for subsequent processing. Such device may be used as a prosthesis for disabled organ.","PeriodicalId":285152,"journal":{"name":"SPIE Photonics Europe","volume":"27 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-04-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"SPIE Photonics Europe","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.2228176","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Difference of Circs (DoC) model allowing to simulate the response of neurons – ganglion cells as a reaction to stimuli is represented and studied in relation with representation of receptive fields of human retina. According to this model the response of neurons is reduced to execution of simple arithmetic operations and the results of these calculations well correlate with experimental data in wide range of stimuli parameters. The simplicity of the model and reliability of reproducing of responses allow to propose the conception of a device which can simulate the signals generated by ganglion cells as a reaction to presented stimuli. The signals produced according to DoC model are considered as a result of primary processing of information received from receptors independently of their type and may be sent to higher levels of nervous system of living creatures for subsequent processing. Such device may be used as a prosthesis for disabled organ.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
人类视觉感知模拟器
环境差异(DoC)模型可以模拟神经元-神经节细胞对刺激的反应,并与人类视网膜的感受野的表征进行了表征和研究。根据该模型,神经元的反应被简化为执行简单的算术运算,这些计算结果与大范围刺激参数下的实验数据有很好的相关性。模型的简单性和反应再现的可靠性使我们提出了一种装置的概念,这种装置可以模拟神经节细胞对所呈现的刺激的反应所产生的信号。根据DoC模型产生的信号被认为是对来自不同类型受体的信息进行初级处理的结果,并可能被发送到生物神经系统的更高层次进行后续处理。这种装置可用作残疾器官的假体。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Ultrahigh bandwidth signal processing Toward efficient fiber-based quantum interface (Conference Presentation) Third harmonic generation in isolated all dielectric meta-atoms (Conference Presentation) 80GHz waveform generator by optical Fourier synthesis of four spectral sidebands (Conference Presentation) 40GHz picosecond pulse source based on a cross-phase modulation induced orthogonal focusing in normally dispersive optical fibers (Conference Presentation)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1