SVM-based Fingerprint Classification Using Orientation Field

Luping Ji, Zhang Yi
{"title":"SVM-based Fingerprint Classification Using Orientation Field","authors":"Luping Ji, Zhang Yi","doi":"10.1109/ICNC.2007.700","DOIUrl":null,"url":null,"abstract":"This paper presents a classification method of fingerprint using orientation field and support vector machines. It estimates orientation field through pixel gradient, then calculates the percentages of the directional block classes. These percentages are combined as a four dimensional vector, by which the trained hierarchical classifier classifies the fingerprint into one of the six classes it belongs to. Experiments show that this method has high classification accuracy as well as low computational time cost.","PeriodicalId":250881,"journal":{"name":"Third International Conference on Natural Computation (ICNC 2007)","volume":"28 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-08-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"24","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Third International Conference on Natural Computation (ICNC 2007)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICNC.2007.700","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 24

Abstract

This paper presents a classification method of fingerprint using orientation field and support vector machines. It estimates orientation field through pixel gradient, then calculates the percentages of the directional block classes. These percentages are combined as a four dimensional vector, by which the trained hierarchical classifier classifies the fingerprint into one of the six classes it belongs to. Experiments show that this method has high classification accuracy as well as low computational time cost.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于方向场的svm指纹分类
提出了一种基于方向场和支持向量机的指纹分类方法。它通过像素梯度估计方向场,然后计算方向块类的百分比。这些百分比被组合成一个四维向量,通过这个向量,训练好的层次分类器将指纹分类到它所属的六个类中的一个。实验表明,该方法具有较高的分类精度和较低的计算时间开销。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Emotional Evaluation of Color Patterns Based on Rough Sets Uniqueness of Linear Combinations of Ridge Functions PID Neural Network Temperature Control System in Plastic Injecting-moulding Machine The Study of Membrane Fouling Modeling Method Based on Wavelet Neural Network for Sewage Treatment Membrane Bioreactor Simulation and Research of the PCB Vias Effects
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1