A Novel Magnetometer Calibration Approach with Artificial Data

Nhan Nguyen, P. Müller
{"title":"A Novel Magnetometer Calibration Approach with Artificial Data","authors":"Nhan Nguyen, P. Müller","doi":"10.23919/icins43215.2020.9133787","DOIUrl":null,"url":null,"abstract":"This paper proposes two methods for calibrating triaxial magnetometers. Both of them calibrate these sensors with more general assumption of noise on three axes than previous state-of-the-art methods. The first method estimates bias and rotation parameters more accurately and the second method yields a better estimate for the scaling parameter than the state-of-the-art method subMLE. The computational time of the latter is also 43 times faster than subMLE, which allows this method to be applied in devices with low-computational resources (e.g. smartphones). Furthermore, the second method yields more robust heading angle estimates compared to subMLE. This result implies that the second method can be applied in light-weight inertial measurement systems, for which the orientation of the device is vital information for pedestrian dead reckoning system.","PeriodicalId":127936,"journal":{"name":"2020 27th Saint Petersburg International Conference on Integrated Navigation Systems (ICINS)","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 27th Saint Petersburg International Conference on Integrated Navigation Systems (ICINS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/icins43215.2020.9133787","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

This paper proposes two methods for calibrating triaxial magnetometers. Both of them calibrate these sensors with more general assumption of noise on three axes than previous state-of-the-art methods. The first method estimates bias and rotation parameters more accurately and the second method yields a better estimate for the scaling parameter than the state-of-the-art method subMLE. The computational time of the latter is also 43 times faster than subMLE, which allows this method to be applied in devices with low-computational resources (e.g. smartphones). Furthermore, the second method yields more robust heading angle estimates compared to subMLE. This result implies that the second method can be applied in light-weight inertial measurement systems, for which the orientation of the device is vital information for pedestrian dead reckoning system.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
一种新的人工数据磁强计校准方法
本文提出了三轴磁强计的两种标定方法。他们都校准这些传感器与更一般的假设噪声在三个轴上比以前的最先进的方法。第一种方法对偏置和旋转参数的估计更准确,第二种方法对尺度参数的估计比最先进的subMLE方法更好。后者的计算时间也比subMLE快43倍,这使得该方法可以应用于计算资源较少的设备(例如智能手机)。此外,与subMLE相比,第二种方法产生了更稳健的航向角估计。该结果表明,第二种方法可以应用于轻型惯性测量系统,其中装置的方向是行人航位推算系统的重要信息。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Visual Localization of a Ground Vehicle Using a Monocamera and Geodesic-Bound Road Signs Optimization of Data Pre-Processing for Compensation of Temperature Dependence of FOG bias by a Neural Network Construction of a Three-Pulse Approach to Phobos Trajectories with Access to the Mars Hill Sphere Based on the Solution of a Series of Lambert's Problems Setup for Measuring Complex Coupling Parameters in Laser Gyro Ring Cavity Implementation of the Algorithm for Estimating the State Vector of a Dynamic System in Undefined Conditions
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1