Discrete Regularization

Dengyong Zhou, B. Scholkopf
{"title":"Discrete Regularization","authors":"Dengyong Zhou, B. Scholkopf","doi":"10.7551/mitpress/9780262033589.003.0013","DOIUrl":null,"url":null,"abstract":". In this paper we discuss discrete regularization, more specifically about how to add finite dissipation to the discretized Euler equations so as to ensure the stability and convergence of numerical solutions of high Reynolds number flows. We will briefly review regularization strategies widely used in Lagrangian shockwave simulations (artificial viscosity), in Eulerian nonoscillatory finite volume simulations, and in Eulerian simulations of turbulent flow (explicit and implicit large eddy simulations). We will describe an alternate strategy for regularization in which we introduce a finite length scale into the discrete model by volume averaging the equations over a computational cell. The new equations, which we term Finite Scale Navier–Stokes, contain ex- plicit (inviscid) dissipation in a uniquely specified form and obey an entropy principle. We will describe features of the new equations including control of the small scales of motion by the larger resolved scales, a principle concerning the partition of total flux of conserved quantities into advective and diffusive components, and a physical basis for the inviscid dissipation.","PeriodicalId":345393,"journal":{"name":"Semi-Supervised Learning","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"32","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Semi-Supervised Learning","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.7551/mitpress/9780262033589.003.0013","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 32

Abstract

. In this paper we discuss discrete regularization, more specifically about how to add finite dissipation to the discretized Euler equations so as to ensure the stability and convergence of numerical solutions of high Reynolds number flows. We will briefly review regularization strategies widely used in Lagrangian shockwave simulations (artificial viscosity), in Eulerian nonoscillatory finite volume simulations, and in Eulerian simulations of turbulent flow (explicit and implicit large eddy simulations). We will describe an alternate strategy for regularization in which we introduce a finite length scale into the discrete model by volume averaging the equations over a computational cell. The new equations, which we term Finite Scale Navier–Stokes, contain ex- plicit (inviscid) dissipation in a uniquely specified form and obey an entropy principle. We will describe features of the new equations including control of the small scales of motion by the larger resolved scales, a principle concerning the partition of total flux of conserved quantities into advective and diffusive components, and a physical basis for the inviscid dissipation.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
离散正则化
. 本文讨论离散正则化,特别是如何在离散欧拉方程中加入有限耗散,以保证高雷诺数流动数值解的稳定性和收敛性。我们将简要回顾在拉格朗日激波模拟(人工黏度)、欧拉非振荡有限体积模拟和湍流欧拉模拟(显式和隐式大涡模拟)中广泛使用的正则化策略。我们将描述一种正则化的替代策略,其中我们通过在计算单元上对方程进行体积平均,将有限长度尺度引入离散模型。我们称之为有限尺度Navier-Stokes方程的新方程以唯一指定的形式包含显式(无粘)耗散,并遵循熵原理。我们将描述新方程的特征,包括由更大的分辨尺度控制小尺度的运动,关于将守恒量的总通量划分为平流和扩散分量的原理,以及无粘耗散的物理基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Prediction of Protein Function from Networks Graph Kernels by Spectral Transforms Semi-Supervised Text Classification Using EM Risks of Semi-Supervised Learning: How Unlabeled Data Can Degrade Performance of Generative Classifiers Metric-Based Approaches for Semi-Supervised Regression and Classification
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1