David Robles-Cuenca, V. Ruiz-Díez, J. Sánchez-Rojas, J. Hernando-García
{"title":"Sub-gram in-plane vibration-driven robot with inclined legs","authors":"David Robles-Cuenca, V. Ruiz-Díez, J. Sánchez-Rojas, J. Hernando-García","doi":"10.3390/iecat2020-08487","DOIUrl":null,"url":null,"abstract":"Despite the breakthroughs in the locomotion of robots at the macroscale, there is not a counterpart at the miniature scale. A recent review [1] pointed out the limitations of sub-gram systems. Locomotion based on legs is already well established for robotic platforms. Assuming a back and forth motion of the legs, a net displacement can be attained when the forward slip is not equal to the backward slip. The use of inclined legs is a common approach to achieve such an asymmetric slip. Reference [2] provides an excellent review of this approach. \n \nHere we propose a sub-gram system based on flexible materials. The body of the robot was a 3 cm long thin film of piezoelectric polyvinylidene fluoride (PVDF) polymer. The actuation mechanism was an in-plane extensional vibration mode of the PVDF film. Two U-shaped 3D printed nylon legs were fabricated, each attached to the edges of the PVDF support. The total mass of the PVDF/legs combination was below 20 mg for all the cases under study. Unidirectional locomotion was achieved, with a maximum speed of 47 mm/s, equivalent to 1.5 body lengths/s, at a voltage of 15 V, with 2 mm long legs at an angle of 60o to the PVDF film. \n \n[1] Ryan St. Pierre, Sarah Bergbreiter, “Toward Autonomy in Sub-Gram Terrestrial Robots”. Annual Review of Control, Robotics, and Autonomous Systems 2, 16.1-16.22, 2019. \n[2] Walter Driesen, “Concept, Modeling and experimental characterization of the modulated friction inertial drive (MFID) locomotion principle: Application to mobile microrobots”. PhD thesis, Ecole polytecnique federale de Lausanne, 2008.","PeriodicalId":152837,"journal":{"name":"Proceedings of 1st International Electronic Conference on Actuator Technology: Materials, Devices and Applications","volume":"45 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of 1st International Electronic Conference on Actuator Technology: Materials, Devices and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/iecat2020-08487","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
Despite the breakthroughs in the locomotion of robots at the macroscale, there is not a counterpart at the miniature scale. A recent review [1] pointed out the limitations of sub-gram systems. Locomotion based on legs is already well established for robotic platforms. Assuming a back and forth motion of the legs, a net displacement can be attained when the forward slip is not equal to the backward slip. The use of inclined legs is a common approach to achieve such an asymmetric slip. Reference [2] provides an excellent review of this approach.
Here we propose a sub-gram system based on flexible materials. The body of the robot was a 3 cm long thin film of piezoelectric polyvinylidene fluoride (PVDF) polymer. The actuation mechanism was an in-plane extensional vibration mode of the PVDF film. Two U-shaped 3D printed nylon legs were fabricated, each attached to the edges of the PVDF support. The total mass of the PVDF/legs combination was below 20 mg for all the cases under study. Unidirectional locomotion was achieved, with a maximum speed of 47 mm/s, equivalent to 1.5 body lengths/s, at a voltage of 15 V, with 2 mm long legs at an angle of 60o to the PVDF film.
[1] Ryan St. Pierre, Sarah Bergbreiter, “Toward Autonomy in Sub-Gram Terrestrial Robots”. Annual Review of Control, Robotics, and Autonomous Systems 2, 16.1-16.22, 2019.
[2] Walter Driesen, “Concept, Modeling and experimental characterization of the modulated friction inertial drive (MFID) locomotion principle: Application to mobile microrobots”. PhD thesis, Ecole polytecnique federale de Lausanne, 2008.