Group Level Audio-Video Emotion Recognition Using Hybrid Networks

Chuanhe Liu, Wenqian Jiang, Minghao Wang, Tianhao Tang
{"title":"Group Level Audio-Video Emotion Recognition Using Hybrid Networks","authors":"Chuanhe Liu, Wenqian Jiang, Minghao Wang, Tianhao Tang","doi":"10.1145/3382507.3417968","DOIUrl":null,"url":null,"abstract":"This paper presents a hybrid network for audio-video group Emo-tion Recognition. The proposed architecture includes audio stream,facial emotion stream, environmental object statistics stream (EOS)and video stream. We adopted this method at the 8th EmotionRecognition in the Wild Challenge (EmotiW2020). According to thefeedback of our submissions, the best result achieved 76.85% in theVideo level Group AFfect (VGAF) Test Database, 26.89% higherthan the baseline. Such improvements prove that our method isstate-of-the-art.","PeriodicalId":402394,"journal":{"name":"Proceedings of the 2020 International Conference on Multimodal Interaction","volume":"28 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"17","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2020 International Conference on Multimodal Interaction","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3382507.3417968","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 17

Abstract

This paper presents a hybrid network for audio-video group Emo-tion Recognition. The proposed architecture includes audio stream,facial emotion stream, environmental object statistics stream (EOS)and video stream. We adopted this method at the 8th EmotionRecognition in the Wild Challenge (EmotiW2020). According to thefeedback of our submissions, the best result achieved 76.85% in theVideo level Group AFfect (VGAF) Test Database, 26.89% higherthan the baseline. Such improvements prove that our method isstate-of-the-art.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
使用混合网络的群体级音频-视频情感识别
提出了一种用于音视频群情感识别的混合网络。所提出的架构包括音频流、面部情绪流、环境对象统计流和视频流。我们在第8届野生挑战赛(EmotiW2020)中采用了这种方法。根据我们提交的反馈,最佳结果在视频级组影响(VGAF)测试数据库中达到76.85%,比基线高26.89%。这样的改进证明我们的方法是最先进的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
OpenSense: A Platform for Multimodal Data Acquisition and Behavior Perception Human-centered Multimodal Machine Intelligence Touch Recognition with Attentive End-to-End Model MORSE: MultimOdal sentiment analysis for Real-life SEttings Temporal Attention and Consistency Measuring for Video Question Answering
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1