{"title":"Simulation and Modeling of Millimeter-Wave Channel at 60 GHz in Indoor Environment for 5G Wireless Communication System","authors":"Shuangde Li, Yuanjian Liu, Leke Lin, Dingming Sun, Shan Yang, X. Sun","doi":"10.1109/COMPEM.2018.8496691","DOIUrl":null,"url":null,"abstract":"This paper presents the propagation characteristics at 60 GHz for fifth generation (5G) millimeter-wave (mmWave) wireless communication systems. The propagation characteristics of mmWave signal in the indoor radio channels are discussed based on the method of shooting and bouncing ray tracing/image (SBR/IM). Omnidirectional path loss models, received power and root-mean-square (RMS) delay spreads statistics are analyzed in terms of line-of-sight (LOS) and non-line-of-sight (NLOS) scenarios. The results show that the path loss exponent (PLE) values in LOS environments vary between 1.56 and 1.78 and the PLE value is 3.87 in NLOS scenario. The RMS delay spreads values vary between 2.1 ns and 6.6 ns. Furthermore, the normal distribution and the Gaussian distribution models best fit the received power and the RMS delay spreads at 60 GHz, respectively.","PeriodicalId":221352,"journal":{"name":"2018 IEEE International Conference on Computational Electromagnetics (ICCEM)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2018-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE International Conference on Computational Electromagnetics (ICCEM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/COMPEM.2018.8496691","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13
Abstract
This paper presents the propagation characteristics at 60 GHz for fifth generation (5G) millimeter-wave (mmWave) wireless communication systems. The propagation characteristics of mmWave signal in the indoor radio channels are discussed based on the method of shooting and bouncing ray tracing/image (SBR/IM). Omnidirectional path loss models, received power and root-mean-square (RMS) delay spreads statistics are analyzed in terms of line-of-sight (LOS) and non-line-of-sight (NLOS) scenarios. The results show that the path loss exponent (PLE) values in LOS environments vary between 1.56 and 1.78 and the PLE value is 3.87 in NLOS scenario. The RMS delay spreads values vary between 2.1 ns and 6.6 ns. Furthermore, the normal distribution and the Gaussian distribution models best fit the received power and the RMS delay spreads at 60 GHz, respectively.