MRAC-Based Adaptive Feedback Linearization Control Method for Continuous-Time Nonlinear Systems with Uncertain Parameters

Boyu Wen, Xin Chen, Yipu Sun
{"title":"MRAC-Based Adaptive Feedback Linearization Control Method for Continuous-Time Nonlinear Systems with Uncertain Parameters","authors":"Boyu Wen, Xin Chen, Yipu Sun","doi":"10.1109/CAC57257.2022.10055000","DOIUrl":null,"url":null,"abstract":"The feedback linearization method can accurately linearize the nonlinear system. However, feedback linearization needs the exact dynamic of nonlinear systems, it is difficult to apply to unknown nonlinear systems. To be capable to perform the feedback linearization of the continuous-time nonlinear system containing uncertain parameters, a model reference adaptive control (MRAC) scheme is introduced in this paper. First, we construct a state feedback controller by the knowledge of the system model structure and form it into an adjustable system together with the nonlinear object. The reference model is decided upon to be a standard linear system. Second, based on the output errors of reference model and adjustable system, we adaptively modify the state feedback controller’s unknown parameters using the gradient descent approach. Finally, the simulations and real-world experiments on a first-order inverted pendulum system are carried out to assess the effectiveness of given methods.","PeriodicalId":287137,"journal":{"name":"2022 China Automation Congress (CAC)","volume":"44 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 China Automation Congress (CAC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CAC57257.2022.10055000","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The feedback linearization method can accurately linearize the nonlinear system. However, feedback linearization needs the exact dynamic of nonlinear systems, it is difficult to apply to unknown nonlinear systems. To be capable to perform the feedback linearization of the continuous-time nonlinear system containing uncertain parameters, a model reference adaptive control (MRAC) scheme is introduced in this paper. First, we construct a state feedback controller by the knowledge of the system model structure and form it into an adjustable system together with the nonlinear object. The reference model is decided upon to be a standard linear system. Second, based on the output errors of reference model and adjustable system, we adaptively modify the state feedback controller’s unknown parameters using the gradient descent approach. Finally, the simulations and real-world experiments on a first-order inverted pendulum system are carried out to assess the effectiveness of given methods.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
参数不确定连续非线性系统的自适应反馈线性化控制方法
反馈线性化方法可以精确地对非线性系统进行线性化。然而,反馈线性化需要非线性系统的精确动态,难以应用于未知的非线性系统。为了能够对含不确定参数的连续非线性系统进行反馈线性化,提出了一种模型参考自适应控制(MRAC)方案。首先,利用系统模型结构的知识构造状态反馈控制器,并与非线性对象组成可调系统。确定参考模型为标准线性系统。其次,基于参考模型和可调系统的输出误差,采用梯度下降法自适应修正状态反馈控制器的未知参数;最后,对一阶倒立摆系统进行了仿真和实际实验,验证了所提方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Single Object Tracking in Satellite Videos with Meta-updater and Knowledge Distillation An improved event-trigger-based robust 6-DOF spacecraft formation control scheme under restricted communication Adaptive Neural Fixed-time Tracking Control of Underactuated USVs With External Disturbances Computer-Aided Diagnosis of COVID-19 with Joint Instance Segmentation and Classification Prescribed-Time Backstepping Algorithms for Leader-Follower Multi-Agent Systems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1