A Machine Learning-Based Approach to Detect Survival of Heart Failure Patients

Ç. Erdaş, Didem Ölçer
{"title":"A Machine Learning-Based Approach to Detect Survival of Heart Failure Patients","authors":"Ç. Erdaş, Didem Ölçer","doi":"10.1109/TIPTEKNO50054.2020.9299320","DOIUrl":null,"url":null,"abstract":"One of the diseases with high prevalence among the consequences of cardiovascular diseases is heart failure. Heart failure is a condition in which the muscles in the heart wall become faded and dilated, limiting the heart’s ability to pump blood. As time passes, the heart cannot meet the proper blood requirement in the body, and as a result, the person has difficulty breathing. As the human age increases, the incidence of heart failure gradually increases, and the rate of mortality due to heart failure also increases. In this context, close monitoring of people suffering from this disease will significantly increase the survival rate. In this study, a machine learning-based system is proposed to predict the mortality-survival status of patients with heart failure. Thus, by identifying people with mortality risk, the survival probability of the patients may increase with more effective and close follow-up.","PeriodicalId":426945,"journal":{"name":"2020 Medical Technologies Congress (TIPTEKNO)","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 Medical Technologies Congress (TIPTEKNO)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TIPTEKNO50054.2020.9299320","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

One of the diseases with high prevalence among the consequences of cardiovascular diseases is heart failure. Heart failure is a condition in which the muscles in the heart wall become faded and dilated, limiting the heart’s ability to pump blood. As time passes, the heart cannot meet the proper blood requirement in the body, and as a result, the person has difficulty breathing. As the human age increases, the incidence of heart failure gradually increases, and the rate of mortality due to heart failure also increases. In this context, close monitoring of people suffering from this disease will significantly increase the survival rate. In this study, a machine learning-based system is proposed to predict the mortality-survival status of patients with heart failure. Thus, by identifying people with mortality risk, the survival probability of the patients may increase with more effective and close follow-up.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
一种基于机器学习的心力衰竭患者生存率检测方法
心衰是心血管疾病中发病率较高的疾病之一。心力衰竭是指心脏壁的肌肉褪色和扩张,限制了心脏泵血的能力。随着时间的推移,心脏不能满足身体正常的血液需求,结果,人就会呼吸困难。随着人类年龄的增长,心力衰竭的发病率逐渐增加,心力衰竭的死亡率也随之增加。在这种情况下,密切监测患有这种疾病的人将大大提高生存率。在这项研究中,提出了一个基于机器学习的系统来预测心力衰竭患者的死亡率-生存状态。因此,通过识别有死亡风险的人群,通过更有效和密切的随访,患者的生存概率可能会增加。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Multiclass Classification of Brain Cancer with Machine Learning Algorithms Digital Filter Design Based on ARDUINO and Its Applications Use of Velocity Vectors for Cell Classification Under Acoustic Drifting Forces Development of a Full Face Mask during the COVID-19 Epidemic Spread Period TIPTEKNO 2020 Index
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1