A non-intrusive approach for the reconstruction of POD modal coefficients through active subspaces

IF 1 4区 工程技术 Q4 MECHANICS Comptes Rendus Mecanique Pub Date : 2019-11-01 DOI:10.1016/j.crme.2019.11.012
Nicola Demo, Marco Tezzele, Gianluigi Rozza
{"title":"A non-intrusive approach for the reconstruction of POD modal coefficients through active subspaces","authors":"Nicola Demo,&nbsp;Marco Tezzele,&nbsp;Gianluigi Rozza","doi":"10.1016/j.crme.2019.11.012","DOIUrl":null,"url":null,"abstract":"<div><p>Reduced order modeling (ROM) provides an efficient framework to compute solutions of parametric problems. Basically, it exploits a set of precomputed high-fidelity solutions—computed for properly chosen parameters, using a full-order model—in order to find the low dimensional space that contains the solution manifold. Using this space, an approximation of the numerical solution for new parameters can be computed in real-time response scenario, thanks to the reduced dimensionality of the problem. In a ROM framework, the most expensive part from the computational viewpoint is the calculation of the numerical solutions using the full-order model. Of course, the number of collected solutions is strictly related to the accuracy of the reduced order model. In this work, we aim at increasing the precision of the model also for few input solutions by coupling the proper orthogonal decomposition with interpolation (PODI)—a data-driven reduced order method—with the active subspace (AS) property, an emerging tool for reduction in parameter space. The enhanced ROM results in a reduced number of input solutions to reach the desired accuracy. In this contribution, we present the numerical results obtained by applying this method to a structural problem and in a fluid dynamics one.</p></div>","PeriodicalId":50997,"journal":{"name":"Comptes Rendus Mecanique","volume":"347 11","pages":"Pages 873-881"},"PeriodicalIF":1.0000,"publicationDate":"2019-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.crme.2019.11.012","citationCount":"14","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Comptes Rendus Mecanique","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1631072119301834","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 14

Abstract

Reduced order modeling (ROM) provides an efficient framework to compute solutions of parametric problems. Basically, it exploits a set of precomputed high-fidelity solutions—computed for properly chosen parameters, using a full-order model—in order to find the low dimensional space that contains the solution manifold. Using this space, an approximation of the numerical solution for new parameters can be computed in real-time response scenario, thanks to the reduced dimensionality of the problem. In a ROM framework, the most expensive part from the computational viewpoint is the calculation of the numerical solutions using the full-order model. Of course, the number of collected solutions is strictly related to the accuracy of the reduced order model. In this work, we aim at increasing the precision of the model also for few input solutions by coupling the proper orthogonal decomposition with interpolation (PODI)—a data-driven reduced order method—with the active subspace (AS) property, an emerging tool for reduction in parameter space. The enhanced ROM results in a reduced number of input solutions to reach the desired accuracy. In this contribution, we present the numerical results obtained by applying this method to a structural problem and in a fluid dynamics one.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
一种通过活动子空间重构POD模态系数的非侵入式方法
降阶建模(ROM)为计算参数化问题的解提供了一个有效的框架。基本上,它利用一组预先计算的高保真度解决方案(使用全阶模型为正确选择的参数计算)来找到包含解决流形的低维空间。利用这个空间,由于问题的降维,可以在实时响应场景中计算新参数的数值解的近似值。在ROM框架中,从计算的角度来看,最昂贵的部分是使用全阶模型计算数值解。当然,收集到的解的数量与降阶模型的准确性严格相关。在这项工作中,我们的目标是通过将适当的正交分解与插值(PODI)(一种数据驱动的降阶方法)与有源子空间(AS)属性(一种用于参数空间约简的新兴工具)相结合,来提高模型的精度。增强的ROM减少了输入解决方案的数量,以达到所需的精度。在本文中,我们给出了将该方法应用于一个结构问题和一个流体动力学问题的数值结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Comptes Rendus Mecanique
Comptes Rendus Mecanique 物理-力学
CiteScore
1.40
自引率
0.00%
发文量
0
审稿时长
12 months
期刊介绍: The Comptes rendus - Mécanique cover all fields of the discipline: Logic, Combinatorics, Number Theory, Group Theory, Mathematical Analysis, (Partial) Differential Equations, Geometry, Topology, Dynamical systems, Mathematical Physics, Mathematical Problems in Mechanics, Signal Theory, Mathematical Economics, … The journal publishes original and high-quality research articles. These can be in either in English or in French, with an abstract in both languages. An abridged version of the main text in the second language may also be included.
期刊最新文献
Vortex-induced vibration of a square cylinder in wind tunnel Large-scale smooth plastic topology optimization using domain decomposition The Meyer’s estimate of solutions to Zaremba problem for second-order elliptic equations in divergent form 2D model simulating the hydro-rheological behavior of leather during convective drying Modal energetic analysis and dynamic response of worm gear drives with a new developed dynamic model
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1