Superefficient Estimation of the Marginals by Exploiting Knowledge on the Copula

J. Einmahl, R. V. D. Akker
{"title":"Superefficient Estimation of the Marginals by Exploiting Knowledge on the Copula","authors":"J. Einmahl, R. V. D. Akker","doi":"10.2139/ssrn.1717842","DOIUrl":null,"url":null,"abstract":"We consider the problem of estimating the marginals in the case where there is knowledge on the copula. If the copula is smooth, it is known that it is possible to improve on the empirical distribution functions: optimal estimators still have a rate of convergence n^-^1^/^2, but a smaller asymptotic variance. In this paper we show that for non-smooth copulas it is sometimes possible to construct superefficient estimators of the marginals: we construct both a copula and, exploiting the information our copula provides, estimators of the marginals with the rate of convergence logn/n.","PeriodicalId":273058,"journal":{"name":"ERN: Model Construction & Estimation (Topic)","volume":"20 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ERN: Model Construction & Estimation (Topic)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.1717842","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

We consider the problem of estimating the marginals in the case where there is knowledge on the copula. If the copula is smooth, it is known that it is possible to improve on the empirical distribution functions: optimal estimators still have a rate of convergence n^-^1^/^2, but a smaller asymptotic variance. In this paper we show that for non-smooth copulas it is sometimes possible to construct superefficient estimators of the marginals: we construct both a copula and, exploiting the information our copula provides, estimators of the marginals with the rate of convergence logn/n.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用Copula上的知识进行超高效的边际估计
我们考虑了在已知联结函数的情况下的边缘估计问题。如果copula是光滑的,则已知可以改进经验分布函数:最优估计仍然具有n^-^1^/^2的收敛率,但渐近方差较小。在本文中,我们证明了对于非光滑联结有时可以构造超有效的边际估计量:我们既构造了一个联结,又利用联结所提供的信息,构造了收敛速率为logn/n的边际估计量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Nonparametric Tests of Conditional Independence for Time Series Estimating Demand with Multi-Homing in Two-Sided Markets Does Court Type, Size and Employee Satisfaction Affect Court Speed?. Hierarchical Linear Modelling With Evidence from Kenya Development of Estimation and Forecasting Method in Intelligent Decision Support Systems Estimating Financial Networks by Realized Interdependencies: A Restricted Autoregressive Approach
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1