Enhanced feature extraction for landmine detection using handheld ground penetrating radar (GPR) based on full wave inversion (FWI)

S. Sule, K. Paulson
{"title":"Enhanced feature extraction for landmine detection using handheld ground penetrating radar (GPR) based on full wave inversion (FWI)","authors":"S. Sule, K. Paulson","doi":"10.23919/IRS.2017.8008194","DOIUrl":null,"url":null,"abstract":"This paper reports the exploration of the potential of enhanced target classification through feature extraction for anti-personnel (AP) mine detection using handheld ground penetrating radar (GPR). Principal component analysis (PCA) using singular value decomposition (SVD) of the Jacobian matrix is used to determine the ability of a bistatic handheld GPR/metal detector system to detect the presence of air space or vacuum in an AP mine preceded by initial detection by the metal detector and successful full wave inversion (FWI). The results are promising and show that under the right conditions of accurate sub-surface parameter estimation through FWI and clutter mitigation, GPR can detect air space in a mine, treating it as a kind of ‘container’, and enable improved target classification for mine detection.","PeriodicalId":430241,"journal":{"name":"2017 18th International Radar Symposium (IRS)","volume":"89 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 18th International Radar Symposium (IRS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/IRS.2017.8008194","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper reports the exploration of the potential of enhanced target classification through feature extraction for anti-personnel (AP) mine detection using handheld ground penetrating radar (GPR). Principal component analysis (PCA) using singular value decomposition (SVD) of the Jacobian matrix is used to determine the ability of a bistatic handheld GPR/metal detector system to detect the presence of air space or vacuum in an AP mine preceded by initial detection by the metal detector and successful full wave inversion (FWI). The results are promising and show that under the right conditions of accurate sub-surface parameter estimation through FWI and clutter mitigation, GPR can detect air space in a mine, treating it as a kind of ‘container’, and enable improved target classification for mine detection.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于全波反演(FWI)的手持式探地雷达(GPR)增强特征提取
本文研究了手持式探地雷达(GPR)杀伤人员地雷探测中通过特征提取增强目标分类的潜力。利用雅可比矩阵奇异值分解(SVD)的主成分分析(PCA)来确定双基地手持GPR/金属探测器系统在金属探测器初始探测和成功全波反演(FWI)之前探测AP矿山中是否存在空气空间或真空的能力。结果表明,在通过FWI精确估计地下参数和杂波抑制的条件下,探地雷达可以探测到矿井中的空气空间,将其视为一种“容器”,并可以改进目标分类。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Maritime Moving Target Indication and localisation with GNSS-based multistatic radar: Experimental proof of concept Ghost target identification by analysis of the Doppler distribution in automotive scenarios Passive components technology for THz-Monolithic Integrated Circuits (THz-MIC) Compressive sensing of up-sampled model and atomic norm for super-resolution radar Real-time capability of meteotsunami detection by WERA ocean radar system
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1