{"title":"A powerful notch filter for PLI cancelation","authors":"Ali Mobaien, Arman Kheirati Roonizi, R. Boostani","doi":"10.1109/ICSPIS54653.2021.9729356","DOIUrl":null,"url":null,"abstract":"In this work, we present a powerful notch filter for power-line interference (PLI) cancelation from biomedical signals. This filter has a unit gain and a zero-phase response. Moreover, the filter can be implemented adaptively to adjust its bandwidth based on the signal-to-noise ratio. To realize this filter, a dynamic model is defined for PLI based on its sinusoid property. Then, a constrained least square error estimation is used to emerge the PLI based on the observations while the constraint is the PLI dynamic. At last, the estimated PLI is subtracted from recordings. The proposed filter is assessed using synthetic data and real biomedical recordings in different noise levels. The results demonstrate this filter as a very powerful and effective means for canceling the PLI out.","PeriodicalId":286966,"journal":{"name":"2021 7th International Conference on Signal Processing and Intelligent Systems (ICSPIS)","volume":"77 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 7th International Conference on Signal Processing and Intelligent Systems (ICSPIS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICSPIS54653.2021.9729356","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
In this work, we present a powerful notch filter for power-line interference (PLI) cancelation from biomedical signals. This filter has a unit gain and a zero-phase response. Moreover, the filter can be implemented adaptively to adjust its bandwidth based on the signal-to-noise ratio. To realize this filter, a dynamic model is defined for PLI based on its sinusoid property. Then, a constrained least square error estimation is used to emerge the PLI based on the observations while the constraint is the PLI dynamic. At last, the estimated PLI is subtracted from recordings. The proposed filter is assessed using synthetic data and real biomedical recordings in different noise levels. The results demonstrate this filter as a very powerful and effective means for canceling the PLI out.