Eigenvalue-Based Block Diagonal Representation and Application to p-Nearest Neighbor Graphs

Aylin Tastan, Michael Muma, A. Zoubir
{"title":"Eigenvalue-Based Block Diagonal Representation and Application to p-Nearest Neighbor Graphs","authors":"Aylin Tastan, Michael Muma, A. Zoubir","doi":"10.23919/eusipco55093.2022.9909832","DOIUrl":null,"url":null,"abstract":"Block diagonal structure of the affinity matrix is advantageous, e.g. in graph-based cluster analysis, where each block corresponds to a cluster. However, constructing block diagonal affinity matrices may be challenging and computationally demanding. We propose a new eigenvalue-based block diagonal representation (EBDR) method. The idea is to estimate a block diagonal affinity matrix by finding an approximation to a vector of target eigenvalues. The target eigenvalues, which follow the ideal block-diagonal model, are efficiently determined based on a vector derived from the graph Laplacian that represents the blocks as a piece-wise linear function. The proposed EBDR shows promising performance compared to four optimally tuned state-of-the-art methods in terms of clustering accuracy and computation time using real-data examples.","PeriodicalId":231263,"journal":{"name":"2022 30th European Signal Processing Conference (EUSIPCO)","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 30th European Signal Processing Conference (EUSIPCO)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/eusipco55093.2022.9909832","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Block diagonal structure of the affinity matrix is advantageous, e.g. in graph-based cluster analysis, where each block corresponds to a cluster. However, constructing block diagonal affinity matrices may be challenging and computationally demanding. We propose a new eigenvalue-based block diagonal representation (EBDR) method. The idea is to estimate a block diagonal affinity matrix by finding an approximation to a vector of target eigenvalues. The target eigenvalues, which follow the ideal block-diagonal model, are efficiently determined based on a vector derived from the graph Laplacian that represents the blocks as a piece-wise linear function. The proposed EBDR shows promising performance compared to four optimally tuned state-of-the-art methods in terms of clustering accuracy and computation time using real-data examples.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于特征值的块对角表示及其在p近邻图中的应用
亲和矩阵的块对角结构是有利的,例如在基于图的聚类分析中,每个块对应一个聚类。然而,构建块对角亲和矩阵可能是具有挑战性的,并且计算要求很高。提出了一种基于特征值的块对角表示(EBDR)方法。其思想是通过寻找目标特征值向量的近似值来估计块对角亲和矩阵。目标特征值,遵循理想的块对角模型,有效地确定基于一个矢量从图拉普拉斯表示块作为一个分段线性函数。在实际数据实例的聚类精度和计算时间方面,与四种优化后的最先进的方法相比,所提出的EBDR表现出了良好的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Assessing Bias in Face Image Quality Assessment Electrically evoked auditory steady state response detection in cochlear implant recipients using a system identification approach Uncovering cortical layers with multi-exponential analysis: a region of interest study Phaseless Passive Synthetic Aperture Imaging with Regularized Wirtinger Flow The faster proximal algorithm, the better unfolded deep learning architecture ? The study case of image denoising
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1