A comprehensive maritime benchmark dataset for detection, tracking and threat recognition

J. L. Patino, Tom Cane, J. Ferryman
{"title":"A comprehensive maritime benchmark dataset for detection, tracking and threat recognition","authors":"J. L. Patino, Tom Cane, J. Ferryman","doi":"10.1109/AVSS52988.2021.9663739","DOIUrl":null,"url":null,"abstract":"This paper describes a new multimodal maritime dataset recorded using a multispectral suite of sensors, including AIS, GPS, radar, and visible and thermal cameras. The visible and thermal cameras are mounted on the vessel itself and surveillance is performed around the vessel in order to protect it from piracy at sea. The dataset corresponds to a series of acted scenarios which simulate attacks to the vessel by small, fast-moving boats (‘skiffs’). The scenarios are inspired by real piracy incidents at sea and present a range of technical challenges to the different stages in an automated surveillance system: object detection, object tracking, and event recognition (in this case, threats towards the vessel). The dataset can thus be employed for training and testing at several stages of a threat detection and classification system. We also present in this paper baseline results that can be used for benchmarking algorithms performing such tasks. This new dataset fills a lack of publicly available datasets for the development and testing of maritime surveillance applications.","PeriodicalId":246327,"journal":{"name":"2021 17th IEEE International Conference on Advanced Video and Signal Based Surveillance (AVSS)","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 17th IEEE International Conference on Advanced Video and Signal Based Surveillance (AVSS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AVSS52988.2021.9663739","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper describes a new multimodal maritime dataset recorded using a multispectral suite of sensors, including AIS, GPS, radar, and visible and thermal cameras. The visible and thermal cameras are mounted on the vessel itself and surveillance is performed around the vessel in order to protect it from piracy at sea. The dataset corresponds to a series of acted scenarios which simulate attacks to the vessel by small, fast-moving boats (‘skiffs’). The scenarios are inspired by real piracy incidents at sea and present a range of technical challenges to the different stages in an automated surveillance system: object detection, object tracking, and event recognition (in this case, threats towards the vessel). The dataset can thus be employed for training and testing at several stages of a threat detection and classification system. We also present in this paper baseline results that can be used for benchmarking algorithms performing such tasks. This new dataset fills a lack of publicly available datasets for the development and testing of maritime surveillance applications.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于检测、跟踪和威胁识别的综合海事基准数据集
本文描述了一个新的多模式海事数据集,使用多光谱传感器套件记录,包括AIS、GPS、雷达、可见光和热像仪。可见和热成像摄像机安装在船只本身,并在船只周围进行监视,以保护它免受海上海盗的侵害。该数据集对应于一系列模拟小型、快速移动的船只(“小艇”)攻击船只的场景。这些场景受到海上真实海盗事件的启发,并对自动监视系统的不同阶段提出了一系列技术挑战:目标检测、目标跟踪和事件识别(在这种情况下,是对船只的威胁)。因此,该数据集可以用于威胁检测和分类系统的几个阶段的训练和测试。我们还在本文中提供了可用于执行此类任务的基准算法的基线结果。这个新的数据集填补了开发和测试海上监视应用的公开可用数据集的不足。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Geometry-Based Person Re-Identification in Fisheye Stereo On the Performance of Crowd-Specific Detectors in Multi-Pedestrian Tracking ARPD: Anchor-free Rotation-aware People Detection using Topview Fisheye Camera A Fire Detection Model Based on Tiny-YOLOv3 with Hyperparameters Improvement A Splittable DNN-Based Object Detector for Edge-Cloud Collaborative Real-Time Video Inference
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1