Efficient ADMM Decoder for Non-binary LDPC Codes based on Bit Embedding Technique

Xiaomeng Guo, Yongchao Wang
{"title":"Efficient ADMM Decoder for Non-binary LDPC Codes based on Bit Embedding Technique","authors":"Xiaomeng Guo, Yongchao Wang","doi":"10.1109/ISIT50566.2022.9834885","DOIUrl":null,"url":null,"abstract":"In this paper, we devise a new alternating direction method of multipliers (ADMM) decoder for non-binary low-density parity-check (LDPC) codes in Galois fields of characteristic two $\\left( {{\\mathbb{F}_{{2^q}}}} \\right)$. Its main content are threefold: first, the procedure of formulating the maximum likelihood (ML) decoding problem in ${\\mathbb{F}_{{2^q}}}$ to a linear integer problem in real space is presented; Second, after relaxing the integer problem to a continuous one, an efficient ADMM algorithm is customized to solve the latter, where all the entries of the variable vectors can be obtained in parallel; Third, we show that the proposed ADMM decoder satisfies the favorable codeword-independent property under some mild conditions and its computation complexity in each ADMM iteration is roughly $\\mathcal{O}\\left( {nq} \\right)$, where n is code length of the considered non-binary LDPC code. Simulation results demonstrate that its performance, such as error-correction and decoding efficiency, is very competitive in comparison with state-of-the-art non-binary LDPC decoders.","PeriodicalId":348168,"journal":{"name":"2022 IEEE International Symposium on Information Theory (ISIT)","volume":"38 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE International Symposium on Information Theory (ISIT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISIT50566.2022.9834885","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we devise a new alternating direction method of multipliers (ADMM) decoder for non-binary low-density parity-check (LDPC) codes in Galois fields of characteristic two $\left( {{\mathbb{F}_{{2^q}}}} \right)$. Its main content are threefold: first, the procedure of formulating the maximum likelihood (ML) decoding problem in ${\mathbb{F}_{{2^q}}}$ to a linear integer problem in real space is presented; Second, after relaxing the integer problem to a continuous one, an efficient ADMM algorithm is customized to solve the latter, where all the entries of the variable vectors can be obtained in parallel; Third, we show that the proposed ADMM decoder satisfies the favorable codeword-independent property under some mild conditions and its computation complexity in each ADMM iteration is roughly $\mathcal{O}\left( {nq} \right)$, where n is code length of the considered non-binary LDPC code. Simulation results demonstrate that its performance, such as error-correction and decoding efficiency, is very competitive in comparison with state-of-the-art non-binary LDPC decoders.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于位嵌入技术的非二进制LDPC码高效ADMM解码器
本文针对特征为$\left({{\mathbb{F}_{{2^q}}}} \right)$的伽罗瓦域的非二进制低密度奇偶校验码,设计了一种新的交替方向乘法器解码器(ADMM)。其主要内容有三个方面:首先,给出了将${\mathbb{F}_{{2^q}} $中的最大似然(ML)解码问题表述为实空间中的线性整数问题的过程;其次,将整数问题松弛为连续问题后,定制一种高效的ADMM算法来解决连续问题,其中变量向量的所有条目都可以并行获得;第三,我们证明了所提出的ADMM解码器在一些温和的条件下满足良好的码字无关性,其每次ADMM迭代的计算复杂度大致为$\mathcal{O}\left({nq} \right)$,其中n为所考虑的非二进制LDPC码的码长。仿真结果表明,该算法在纠错和译码效率方面,与目前最先进的非二进制LDPC译码器相比,具有很强的竞争力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Fast Low Rank column-wise Compressive Sensing Ternary Message Passing Decoding of RS-SPC Product Codes Understanding Deep Neural Networks Using Sliced Mutual Information Rate-Optimal Streaming Codes Over the Three-Node Decode-And-Forward Relay Network Unlimited Sampling via Generalized Thresholding
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1