LEA: A Learned Encoding Advisor for Column Stores

Lujing Cen, Andreas Kipf, Ryan Marcus, Tim Kraska
{"title":"LEA: A Learned Encoding Advisor for Column Stores","authors":"Lujing Cen, Andreas Kipf, Ryan Marcus, Tim Kraska","doi":"10.1145/3464509.3464885","DOIUrl":null,"url":null,"abstract":"Data warehouses organize data in a columnar format to enable faster scans and better compression. Modern systems offer a variety of column encodings that can reduce storage footprint and improve query performance. Selecting a good encoding scheme for a particular column is an optimization problem that depends on the data, the query workload, and the underlying hardware. We introduce Learned Encoding Advisor (LEA), a learned approach to column encoding selection. LEA is trained on synthetic datasets with various distributions on the target system. Once trained, LEA uses sample data and statistics (such as cardinality) from the user’s database to predict the optimal column encodings. LEA can optimize for encoded size, query performance, or a combination of the two. Compared to the heuristic-based encoding advisor of a commercial column store on TPC-H, LEA achieves 19% lower query latency while using 26% less space.","PeriodicalId":306522,"journal":{"name":"Fourth Workshop in Exploiting AI Techniques for Data Management","volume":"77 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-05-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fourth Workshop in Exploiting AI Techniques for Data Management","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3464509.3464885","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

Data warehouses organize data in a columnar format to enable faster scans and better compression. Modern systems offer a variety of column encodings that can reduce storage footprint and improve query performance. Selecting a good encoding scheme for a particular column is an optimization problem that depends on the data, the query workload, and the underlying hardware. We introduce Learned Encoding Advisor (LEA), a learned approach to column encoding selection. LEA is trained on synthetic datasets with various distributions on the target system. Once trained, LEA uses sample data and statistics (such as cardinality) from the user’s database to predict the optimal column encodings. LEA can optimize for encoded size, query performance, or a combination of the two. Compared to the heuristic-based encoding advisor of a commercial column store on TPC-H, LEA achieves 19% lower query latency while using 26% less space.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
LEA:列存储的学习编码顾问
数据仓库以柱状格式组织数据,以实现更快的扫描和更好的压缩。现代系统提供了各种列编码,可以减少存储占用并提高查询性能。为特定列选择一个好的编码方案是一个优化问题,它取决于数据、查询工作负载和底层硬件。我们介绍了学习编码顾问(LEA),这是一种学习的列编码选择方法。LEA是在目标系统上具有不同分布的合成数据集上训练的。经过训练后,LEA使用来自用户数据库的样本数据和统计数据(如基数)来预测最佳的列编码。LEA可以针对编码大小、查询性能或两者的组合进行优化。与TPC-H上基于启发式的商业列存储编码顾问相比,LEA的查询延迟降低了19%,而使用的空间减少了26%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Leveraging Approximate Constraints for Localized Data Error Detection Balancing Familiarity and Curiosity in Data Exploration with Deep Reinforcement Learning A Tailored Regression for Learned Indexes: Logarithmic Error Regression RUSLI: Real-time Updatable Spline Learned Index Pre-Trained Web Table Embeddings for Table Discovery
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1